Display options
Share it on

Antioxidants (Basel). 2020 Jul 28;9(8). doi: 10.3390/antiox9080676.

SkQ1 Suppresses the p38 MAPK Signaling Pathway Involved in Alzheimer's Disease-Like Pathology in OXYS Rats.

Antioxidants (Basel, Switzerland)

Natalia A Muraleva, Natalia A Stefanova, Nataliya G Kolosova

Affiliations

  1. Institute of Cytology and Genetics SB RAS, 10 Lavrentieva Avenue, Novosibirsk 630090, Russia.
  2. N. N. Vorozhtsov Institute of Organic Chemistry SB RAS, 9 Lavrentieva Avenue, Novosibirsk 630090, Russia.

PMID: 32731533 PMCID: PMC7463502 DOI: 10.3390/antiox9080676

Abstract

Alzheimer's disease (AD) is the most common type of dementia and is currently incurable, and mitogen-activated protein kinase (MAPK) p38 is implicated in the pathogenesis of AD. p38 MAPK inhibition is considered a promising strategy against AD, but there are no safe inhibitors capable of penetrating the blood-brain barrier. Earlier, we have shown that mitochondria-targeted antioxidant plastoquinonyl-decyltriphenylphosphonium (SkQ1) at nanomolar concentrations can prevent, slow down, or partially alleviate AD-like pathology in accelerated-senescence OXYS rats. Here we confirmed that dietary supplementation with SkQ1 during active progression of AD-like pathology in OXYS rats (aged 12-18 months) suppresses AD-like pathology progression, and for the first time, we showed that its effects are associated with suppression of p38 MAPK signaling pathway (MAPKsp) activity. Transcriptome analysis, western blotting, and immunofluorescent staining revealed that SkQ1 suppresses p38 MAPKsp activity in the hippocampus at the level of expression of genes involved in the p38 MAPKsp and reduces the phosphorylation of intermediate kinases (p38 MAPK and MK2) and a downstream protein (αB-crystallin). Thus, the anti-AD effects of SkQ1 are associated with improvement in the functioning of relevant signaling pathways and intracellular processes, thus making it a promising therapeutic agent for human AD.

Keywords: Alzheimer’s disease; OXYS rats; SkQ1; mitochondria-targeted antioxidant; p38 MAPK

References

  1. Am J Transplant. 2008 Dec;8(12):2558-68 - PubMed
  2. Elife. 2015 Feb 18;4: - PubMed
  3. Biochim Biophys Acta. 2009 May;1787(5):437-61 - PubMed
  4. Curr Protein Pept Sci. 2016;17(4):332-42 - PubMed
  5. Oxid Med Cell Longev. 2019 Jul 15;2019:3984906 - PubMed
  6. J Neurosci Res. 2008 May 1;86(6):1343-52 - PubMed
  7. Curr Alzheimer Res. 2017;14(12):1283-1292 - PubMed
  8. Neuron. 2018 Jan 3;97(1):32-58 - PubMed
  9. Neurochem Int. 2010 Nov;57(5):547-55 - PubMed
  10. J Neurochem. 2001 Feb;76(3):730-6 - PubMed
  11. Front Cell Neurosci. 2018 May 09;12:126 - PubMed
  12. J Alzheimers Dis. 2011;24(4):615-31 - PubMed
  13. Cancer Res. 2018 Aug 1;78(15):4191-4202 - PubMed
  14. Exp Gerontol. 2019 May;119:45-52 - PubMed
  15. Neuropathol Appl Neurobiol. 2006 Apr;32(2):119-30 - PubMed
  16. J Neurosci. 2013 Feb 6;33(6):2313-25 - PubMed
  17. Ophthalmol Ther. 2019 Mar;8(1):63-73 - PubMed
  18. Rev Neurosci. 2018 Dec 19;30(1):9-30 - PubMed
  19. Oncotarget. 2015 Jan 30;6(3):1396-413 - PubMed
  20. FEBS Lett. 1997 Oct 13;416(1):117-21 - PubMed
  21. Nat Rev Mol Cell Biol. 2019 Jul;20(7):421-435 - PubMed
  22. Aging Cell. 2020 Mar;19(3):e13109 - PubMed
  23. Free Radic Biol Med. 2007 Jun 15;42(12):1858-65 - PubMed
  24. Antioxidants (Basel). 2019 Jun 14;8(6): - PubMed
  25. Cell Cycle. 2014;13(6):898-909 - PubMed
  26. Molecules. 2017 Aug 02;22(8): - PubMed
  27. Front Biosci (Elite Ed). 2017 Jan 1;9:174-191 - PubMed
  28. Aging (Albany NY). 2016 Oct 6;8(11):2713-2733 - PubMed
  29. J Alzheimers Dis. 2018;63(3):1075-1088 - PubMed
  30. Exp Neurol. 2003 Oct;183(2):394-405 - PubMed
  31. Curr Med Chem. 2011;18(16):2459-76 - PubMed
  32. Adv Exp Med Biol. 2013;793:81-119 - PubMed

Publication Types

Grant support