Display options
Share it on

Diabetes Metab Syndr Obes. 2020 Jul 08;13:2433-2442. doi: 10.2147/DMSO.S257687. eCollection 2020.

Aerobic Exercise and Metabolic Syndrome: The Role of Sympathetic Activity and the Redox System.

Diabetes, metabolic syndrome and obesity : targets and therapy

Vincenzo Monda, Francesco Sessa, Maria Ruberto, Marco Carotenuto, Gabriella Marsala, Marcellino Monda, Maria Teresa Cambria, Marinella Astuto, Alfio Distefano, Giovanni Messina

Affiliations

  1. Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Caserta 81100, Italy.
  2. Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71121, Italy.
  3. CDR Santa Maria del Pozzo, Naples 80049, Italy.
  4. Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Caserta 81100, Italy.
  5. Struttura Complessa di Farmacia, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Foggia, Foggia 71121, Italy.
  6. Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy.
  7. Azienda Ospedaliera "Policlinico Vittorio Emanuele", U.O. di Anestesia e Terapia Intensiva, Catania 95123, Italy.

PMID: 32753926 PMCID: PMC7354914 DOI: 10.2147/DMSO.S257687

Abstract

BACKGROUND: Aerobic exercise can greatly assist in reducing collateral effects of metabolic syndrome (MetS). Moreover, aerobic exercise is associated with sympathetic activation and adaptive responses to sustain muscle engagement, changes in the release of Orexin A, a pleiotropic neuropeptide.

AIM: The aim of this study was to analyze the beneficial effects of aerobic exercise without dietary changes, in a cohort of MetS subjects, focusing on the role of sympathetic and orexinergic activity. Several blood parameters linked to MetS ROS production, heart rate, galvanic skin response, d-ROM test, and Orexin A serum levels were evaluated in ten males with MetS (BMI 30-34.9) before and after a period of 6 months of aerobic exercise compared to ten healthy subjects.

METHODS: Ten male subjects (aged 54 ± 4.16) with MetS (MetS group) and ten healthy males (aged 49.7 ± 2.79, Healthy group) were told about the study protocol and possible risks, signed the informed consent, and voluntarily participated in the study. Several blood parameters were evaluated in the two tested groups and were re-evaluated in the MetS group after 6 months of training (MetS6M group). The training protocol consisted of more than 30 min/day of walking (average speed of 4.5 km/h) and 3 days/week of aerobic activities (jogging under heart rate control - 120-140 bpm for 45 min).

RESULTS: The results showed that exercise induced a significant increase in GSR and plasma Orexin A but no significant increase in d-ROM values. Significant decreases in the serum ALT enzyme, triglycerides, and total cholesterol were found, while the HDL levels were significantly higher. Finally, a significant reduction of BMI and resting HR were reported.

CONCLUSION: The results of this study confirm that physical activity is associated with sympathetic activation, having a pivotal role against adverse effects linked to MetS. Moreover, this study demonstrates that, in patients with MetS, Orexin A is involved in hormonal adaptations to exercise.

© 2020 Monda et al.

Keywords: BMI; HR; MetS; Orexin A; body mass index; cholesterol; heart rate; metabolic syndrome; physical activity

Conflict of interest statement

The authors report no conflicts of interest in this work.

References

  1. Am J Physiol. 1999 Dec;277(6):R1780-5 - PubMed
  2. Antioxid Redox Signal. 2011 Nov 1;15(9):2477-86 - PubMed
  3. Annu Rev Plant Biol. 2004;55:373-99 - PubMed
  4. Physiol Rev. 2002 Jan;82(1):47-95 - PubMed
  5. Biochim Biophys Acta. 2014 Mar;1842(3):440-5 - PubMed
  6. Circulation. 2009 Feb 3;119(4):628-47 - PubMed
  7. Ear Hear. 2016 Jul-Aug;37 Suppl 1:118S-25S - PubMed
  8. J Nutr Biochem. 2016 Mar;29:1-11 - PubMed
  9. Front Physiol. 2018 Mar 22;9:259 - PubMed
  10. Curr Opin Cardiol. 2006 Jan;21(1):1-6 - PubMed
  11. Oxid Med Cell Longev. 2014;2014:131024 - PubMed
  12. Mol Neurobiol. 2018 Aug;55(8):6362-6368 - PubMed
  13. Antioxidants (Basel). 2019 Dec 13;8(12): - PubMed
  14. Circulation. 2003 Jun 24;107(24):3109-16 - PubMed
  15. J Basic Clin Physiol Pharmacol. 2016 Nov 1;27(6):611-616 - PubMed
  16. Exp Physiol. 2010 Jan;95(1):1-9 - PubMed
  17. Am J Respir Crit Care Med. 2013 Feb 15;187(4):347-65 - PubMed
  18. Am J Physiol Heart Circ Physiol. 2017 May 1;312(5):H1031-H1051 - PubMed
  19. Oxid Med Cell Longev. 2017;2017:3831972 - PubMed
  20. Front Physiol. 2017 Feb 14;8:85 - PubMed
  21. Med Sci Sports Exerc. 2017 Mar;49(3):413-419 - PubMed
  22. Auton Neurosci. 2012 Aug 16;169(2):102-6 - PubMed
  23. Cardiol Res Pract. 2014;2014:943162 - PubMed
  24. Obes Rev. 2015 Jan;16(1):1-12 - PubMed
  25. Interface Focus. 2014 Oct 6;4(5):20140040 - PubMed
  26. Oxid Med Cell Longev. 2016;2016:3565127 - PubMed
  27. Pflugers Arch. 2002 Nov;445(2):273-8 - PubMed
  28. PLoS One. 2012;7(3):e32361 - PubMed
  29. Dis Model Mech. 2009 May-Jun;2(5-6):231-7 - PubMed
  30. Oncotarget. 2018 Mar 30;9(24):17181-17198 - PubMed
  31. Oxid Med Cell Longev. 2016;2016:7239639 - PubMed
  32. Pharmacol Rev. 2009 Jun;61(2):162-76 - PubMed
  33. Chem Biol Interact. 2018 Feb 1;281:121-136 - PubMed
  34. Am J Physiol Regul Integr Comp Physiol. 2004 Mar;286(3):R505-11 - PubMed
  35. Circulation. 2004 Jan 27;109(3):433-8 - PubMed
  36. Front Physiol. 2018 Jul 24;9:982 - PubMed
  37. Eur J Clin Invest. 2003 Oct;33(10):924-30 - PubMed
  38. Metabolism. 1994 Jul;43(7):917-24 - PubMed
  39. Med Hypotheses. 2009 May;72(5):527-32 - PubMed
  40. Eat Weight Disord. 2014 Jun;19(2):249-60 - PubMed
  41. Mol Metab. 2015 Jul 17;4(10):692-705 - PubMed
  42. Front Physiol. 2018 Mar 22;9:261 - PubMed
  43. Gene Expr. 2018 May 18;18(2):89-101 - PubMed
  44. Nutr Metab Cardiovasc Dis. 2007 May;17(4):319-26 - PubMed
  45. Front Neurol. 2017 May 22;8:188 - PubMed
  46. Obes Rev. 2012 Aug;13(8):681-91 - PubMed
  47. BMJ. 2018 Jul 12;362:k2734 - PubMed
  48. Sports Med. 2006;36(4):327-58 - PubMed
  49. Arterioscler Thromb Vasc Biol. 2001 Jul;21(7):1226-32 - PubMed
  50. Can J Cardiol. 2006 May 15;22(7):601-602 - PubMed
  51. Scientifica (Cairo). 2012;2012:205027 - PubMed
  52. Front Biosci (Landmark Ed). 2019 Jan 1;24:564-575 - PubMed
  53. Aging (Albany NY). 2018 Feb 23;10(2):166-177 - PubMed
  54. J Sport Health Sci. 2016 Jun;5(2):151-154 - PubMed
  55. Neurobiol Dis. 2014 Dec;72 Pt A:3-12 - PubMed
  56. J Biol Regul Homeost Agents. 2019 Apr 10;33(2):587-592 - PubMed
  57. Front Physiol. 2017 Oct 04;8:773 - PubMed

Publication Types