Display options
Share it on

Plants (Basel). 2020 Aug 03;9(8). doi: 10.3390/plants9080981.

Hypoxic Treatment Decreases the Physiological Action of the Herbicide Imazamox on .

Plants (Basel, Switzerland)

Miriam Gil-Monreal, Mercedes Royuela, Ana Zabalza

Affiliations

  1. Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Publica de Navarra, Campus Arrosadia s/n, 31006 Pamplona, Spain.

PMID: 32756308 PMCID: PMC7464988 DOI: 10.3390/plants9080981

Abstract

The inhibition of acetolactate synthase (ALS; EC 2.2.1.6), an enzyme located in the biosynthetic pathway of branched-chain amino acids, is the target site of the herbicide imazamox. One of the physiological effects triggered after ALS inhibition is the induction of aerobic ethanol fermentation. The objective of this study was to unravel if fermentation induction is related to the toxicity of the herbicide or if it is a plant defense mechanism. Pea plants were exposed to two different times of hypoxia before herbicide application in order to induce the ethanol fermentation pathway, and the physiological response after herbicide application was evaluated at the level of carbohydrates and amino acid profile. The effects of the herbicide on total soluble sugars and starch accumulation, and changes in specific amino acids (branched-chain, amide, and acidic) were attenuated if plants were subjected to hypoxia before herbicide application. These results suggest that fermentation is a plant defense mechanism that decreases the herbicidal effect.

Keywords: acetolactate synthase; aerobic fermentation; ethanol fermentation; imidazolinones; mode of action

References

  1. Plant Biol (Stuttg). 2016 May;18(3):382-90 - PubMed
  2. Pest Manag Sci. 2018 Oct;74(10):2211-2215 - PubMed
  3. Curr Opin Plant Biol. 2016 Oct;33:64-71 - PubMed
  4. Plant Physiol. 1991 Mar;95(3):699-706 - PubMed
  5. J Plant Physiol. 2015 Mar 1;175:102-12 - PubMed
  6. Plant Physiol. 1994 Aug;105(4):1075-87 - PubMed
  7. Plant Physiol. 1987 Jul;84(3):775-80 - PubMed
  8. Amino Acids. 2010 Oct;39(4):1023-8 - PubMed
  9. Genetics. 1966 Apr;53(4):709-15 - PubMed
  10. Metabolomics. 2009 Sep;5(3):277-291 - PubMed
  11. Plant Physiol. 2009 Feb;149(2):1087-98 - PubMed
  12. J Exp Bot. 2003 Jan;54(382):585-93 - PubMed
  13. Environ Sci Technol. 2011 Aug 15;45(16):7036-43 - PubMed
  14. Plant Physiol Biochem. 2008 Mar;46(3):309-24 - PubMed
  15. Plant Sci. 2017 Nov;264:16-28 - PubMed
  16. Plant Physiol. 2010 Mar;152(3):1501-13 - PubMed
  17. Biochem Genet. 1994 Aug;32(7-8):279-300 - PubMed
  18. Pestic Biochem Physiol. 2019 Jul;158:12-17 - PubMed
  19. J Agric Food Chem. 2016 Jan 13;64(1):95-106 - PubMed
  20. J Agric Food Chem. 2006 Nov 15;54(23):8818-23 - PubMed
  21. PLoS One. 2013 Sep 06;8(9):e73847 - PubMed
  22. Physiol Plant. 2002 Apr;114(4):524-532 - PubMed
  23. Plant Physiol. 2003 Jun;132(2):968-78 - PubMed
  24. New Phytol. 2011 Apr;190(2):472-87 - PubMed
  25. Plant Physiol Biochem. 2004 Dec;42(10):841-6 - PubMed
  26. Pest Manag Sci. 2010 Mar;66(3):262-9 - PubMed
  27. Plant Methods. 2018 Jun 13;14:48 - PubMed
  28. J Plant Physiol. 2013 Jun 15;170(9):814-21 - PubMed
  29. Chemosphere. 2009 Aug;76(7):885-92 - PubMed
  30. J Agric Food Chem. 2005 Sep 21;53(19):7486-93 - PubMed
  31. Annu Rev Plant Biol. 2015;66:345-67 - PubMed
  32. Trends Plant Sci. 1999 Nov;4(11):446-452 - PubMed
  33. Sci Rep. 2019 Dec 3;9(1):18225 - PubMed
  34. J Agric Food Chem. 2004 Dec 15;52(25):7601-6 - PubMed
  35. J Exp Bot. 2019 Oct 24;70(20):5839-5851 - PubMed
  36. J Plant Physiol. 2011 Sep 1;168(13):1568-75 - PubMed
  37. Plant Physiol. 2003 Nov;133(3):1351-9 - PubMed
  38. Trends Plant Sci. 1999 Aug;4(8):320-325 - PubMed

Publication Types

Grant support