Display options
Share it on

J Biomed Mater Res B Appl Biomater. 2021 Mar;109(3):420-427. doi: 10.1002/jbm.b.34710. Epub 2020 Aug 20.

Analysis of the mechanical and physicochemical properties of Ti-6Al-4 V discs obtained by selective laser melting and subtractive manufacturing method.

Journal of biomedical materials research. Part B, Applied biomaterials

Mariana Lima da Costa Valente, Thaísa Theodoro de Oliveira, Simone Kreve, Rodolfo Lisboa Batalha, Diego Pedreira de Oliveira, Simon Pauly, Claudemiro Bolfarini, Luciano Bachmann, Andréa Cândido Dos Reis

Affiliations

  1. Department of Dental Materials and Prosthodontics; Ribeirão Preto Dental School, University of São Paulo, (USP), São Paulo, Brazil.
  2. Department of Materials Engineering, Federal University of São Carlos, (UFScar), São Carlos, Brazil.
  3. Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research, (IFW), Dresden, Germany.
  4. Physics Department; Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, (USP), São Paulo, Brazil.

PMID: 32815312 DOI: 10.1002/jbm.b.34710

Abstract

The surface properties of titanium and its alloys are commonly modified by different techniques, including additive manufacturing (AM), to improve the osseointegration of dental implants. The aim of this study was to evaluate and compare the wettability, topography, chemistry, and structure of titanium-aluminum-vanadium (Ti-6Al-4 V) discs fabricated by selective laser melting (SLM) and subtractive manufacturing (conventional machining). Three different groups were evaluated: selective laser melting (SLM); conventional machining with H

© 2020 Wiley Periodicals LLC.

Keywords: additive manufacturing; dental implants; laser sintering technology; surface properties; titanium alloy

References

  1. Arjunan A, Demetriou M, Baroutaji A, Wang C. Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds. J Mech Behav Biomed Mater. 2019;102:1-20. - PubMed
  2. Dias Corpa Tardelli J, Lima da Costa Valente M, Theodoro de Oliveira T, Cândido Dos Reis A. Influence of chemical composition on cell viability on titanium surfaces: a systematic review. J Prosthet Dent. 2020. doi:10.1016/j.prosdent.2020.02.001. - PubMed
  3. Valente MLDC, Castro DT, Shimano AC, Reis ACD. Influence of an alternative implant design and surgical protocol on primary stability. Braz Dent J. 2019;30:47-51. - PubMed
  4. Oliveira TT, Reis AC. Fabrication of dental implants by the additive manufacturing method: a systematic review. J Prosthet Dent. 2019;122:270-274. - PubMed
  5. Wally ZJ, Haque AM, Feteira A, Claeyssens F, Goodall R, Reilly GC. Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications. J Mech Behav Biomed Mater. 2019;90:20-29. - PubMed
  6. Massaro C, Rotolo P, De Riccardis F, et al. Comparative investigation of the surface properties of comercial titanium dental implants. Part I: chemical composition. J Mater Sci: Mater Med. 2002;13:535-548. - PubMed
  7. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844-854. - PubMed
  8. Rupp F, Scheideler L, Eichler M, Geis-Gerstorfer J. Wetting behavior of dental implants. Int J Oral Maxillofac Implants. 2011;26:1256-1266. - PubMed
  9. Gittens RA, Scheideler L, Rupp F, et al. A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater. 2014;10:2907-2918. - PubMed
  10. Mangano C, De Rosa A, Desiderio V, et al. The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials. 2010;31:3543-3551. - PubMed
  11. Hindy A, Farahmand F, Tabatabaei FS. In vitro biological outcome of laser application for modification or processing of titanium dental implants. Lasers Med Sci. 2017;32:1197-1206. - PubMed
  12. Xu R, Hu X, Yu X, et al. Micro−/nano-topography of selective laser melting titanium enhances adhesion and proliferation and regulates adhesion-related gene expressions of human gingival fibroblasts and human gingival epithelial cells. Int J Nanomed. 2018;13:5045-5057. - PubMed
  13. Hyzy SL, Cheng A, Cohen DJ, et al. Novel hydrophilic nanostructured microtexture on direct metal laser sintered Ti-6Al-4V surfaces enhances osteoblast response in vitro and osseointegration in a rabbit model. J Biomed Mater Res A. 2016;104:2086-2098. - PubMed
  14. Barui S, Chatterjee S, Mandal S, Kumar A, Basu B. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: experimental and computational analysis. Korean J Couns Psychother. 2017;70:812-823. - PubMed
  15. Xiao Y, Dai N, Chen Y, Zhang J, Choi SW. On the microstructure and corrosion behaviors of selective laser melted CP-Ti and Ti-6Al-4V alloy in Hank's artificial body fluid. Mater Res Express. 2019;6:1-12. - PubMed
  16. Liang H, Yang Y, Xie D, et al. Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility. J Mater Sci Technol. 2019;35:1284-1297. - PubMed
  17. Yan Y, Chibowski E, Szcześ A. Surface properties of Ti-6Al-4V alloy part I: surface roughness and apparent surface free energy. Korean J Couns Psychother. 2017;70:207-215. - PubMed
  18. Vance A, Bari K, Arjunan A. Investigation of Ti64 sheathed cellular anatomical structure as a tibia implant. Biomed Phys Eng Express. 2019;5:1-13. - PubMed
  19. Hara T, Matsuoka K, Matsuzaka K, Yoshinari M, Inoue T. Effect of surface roughness of titanium dental implant placed under periosteum on gene expression of bone morphogenic markers in rat. Bull Tokyo Dent Coll. 2012;53:45-50. - PubMed
  20. Liang J, Xu S, Shen M, et al. Osteogenic activity of titanium surfaces with hierarchical micro−/nano-structures obtained by hydrofluoric acid treatment. Int J Nanomed. 2017;12:1317-1328. - PubMed
  21. Zhang LC, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater. 2016;18:463-475. - PubMed
  22. Bobbio LD, Qina S, Dunbar A, Michaleris P, Beese AM. Characterization of the strength of support structures used in powder bed fusion additive manufacturing of Ti-6Al-4V. Addit Manuf. 2017;14:60-68. - PubMed
  23. Gittens RA, Olivares-Navarrete R, Cheng A, et al. The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells. Acta Biomater. 2013;9:6268-6277. - PubMed
  24. Buser D, Nydegger T, Oxland T, et al. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res. 1999;45:75-83. - PubMed
  25. Shaoki A, Xu JY, Sun H, et al. Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting. Biofabrication. 2016;8:2-10. - PubMed
  26. Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Hüttig F. Surface characteristics of dental implants: a review. Dent Mater. 2018;34:40-57. - PubMed
  27. Li XP, Van Humbeeck J, Kruth JP. Selective laser melting of weak-textured commercially pure titanium with high strength and ductility: a study from laser power perspective. Mater Des. 2017;116:352-358. - PubMed
  28. Rupp F, Gittens RA, Scheideler L, et al. A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater. 2014;10:2894-2906. - PubMed
  29. Oliveira DP, Palmieri A, Carinci F, Bolfarini C. Gene expression of human osteoblasts cells on chemically treated surfaces of Ti-6Al-4V-ELI. Korean J Couns Psychother. 2015;51:248-255. - PubMed
  30. de Oliveira DP, Toniato TV, Ricci R, et al. Biological response of chemically treated surface of the ultrafine-grained Ti-6Al-7Nb alloy for biomedical applications. Int J Nanomed. 2019;14:1725-1736. - PubMed
  31. Yadroitsev I, Krakhmalev P, Yadroitsava I. Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution. J Alloys Compd. 2014;58315:404-409. - PubMed
  32. Trevisan F, Calignano F, Aversa A, et al. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. J Appl Biomater Funct Mater. 2018;16:57-67. - PubMed
  33. Ramakrishnaiah R, Al Kheraif AA, Mohammad A, et al. Preliminary fabrication and characterization of electron beam melted Ti-6Al-4V customized dental implant. Saudi J Biol Sci. 2017;24:787-796. - PubMed
  34. Thijs L, Verhaeghe F, Craeghs T, Van-Humbeecka J, Kruth JP. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater. 2010;58:3303-3312. - PubMed
  35. Schwaba H, Palm F, Kühna U, Eckertac J. Microstructure and mechanical properties of the near-beta titanium alloy Ti-5553 processed by selective laser melting. Mater Des. 2016;105:75-80. - PubMed
  36. Fousová M, Vojtěch D, Kubásek J, Jablonská E, Fojt J. Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process. J Mech Behav Biomed Mater. 2017;69:368-376. - PubMed
  37. Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20:172-184. - PubMed
  38. Tsukanaka M, Fujibayashi S, Takemoto M, et al. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology. Dent Mater J. 2016;35:118-125. - PubMed
  39. Vaithilingam J, Kilsby S, Goodridge RD, Christie SD, Edmondson S, Hague RJ. Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound. Korean J Couns Psychother. 2015;46:52-61. - PubMed
  40. Yang N, Tian Y, Zhang D. Novel real function based method to construct heterogeneous porous scaffolds and additive manufacturing for use in medical engineering. Med Eng Phys. 2015;37:1037-1046. - PubMed
  41. van Noort R. The future of dental devices is digital. Dent Mater. 2012;28:3-12. - PubMed
  42. Pattanaik B, Pawar S, Pattanaik S. Biocompatible implant surface treatments. Indian J Dent Res. 2012;23:398-406. - PubMed
  43. Bsat S, Yavari SA, Munsch M, Valstar ER, Zadpoor AA. Effect of alkali-acid-heat chemical surface treatment on electron beam melted porous titanium and its apatite forming ability. Materials (Basel). 2015;8:1612-1625. - PubMed
  44. Claros CAE, Oliveira DP, Campanelli LC, Pereira da Silva PSC, Bolfarini C. Fatigue behavior of Ti-6Al-4V alloy in saline solution with the surface modified at a micro- and nanoscale by chemical treatment. Korean J Couns Psychother. 2016;67:425-432. - PubMed
  45. García-Gareta E, Hua J, Orera A, Kohli N, Knowles JC, Blunn GW. Biomimetic surface functionalization of clinically relevant metals used as orthopaedic and dental implants. Biomed Mater. 2017;13:2-14. - PubMed
  46. Moon BS, Kim S, Kim HE, Jang TS. Hierarchical micro-nano structured Ti6Al4V surface topography via two-step etching process for enhanced hydrophilicity and osteoblastic responses. Korean J Couns Psychother. 2017;73:90-98. - PubMed
  47. Cai K, Frant M, Bossert J, Hildebrand G, Liefeith K, Jandt KD. Surface functionalized titanium thin films: zeta-potential, protein adsorption and cell proliferation. Colloids Surf, B. 2006;50:1-8. - PubMed

Publication Types