Display options
Share it on

Front Bioeng Biotechnol. 2020 Jul 14;8:759. doi: 10.3389/fbioe.2020.00759. eCollection 2020.

Modeling Pathway Dynamics of the Skeletal Muscle Response to Intravenous Methylprednisolone (MPL) Administration in Rats: Dosing and Tissue Effects.

Frontiers in bioengineering and biotechnology

Alison Acevedo, Debra DuBois, Richard R Almon, William J Jusko, Ioannis P Androulakis

Affiliations

  1. Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States.
  2. Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.
  3. Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States.
  4. Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, United States.
  5. Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States.

PMID: 32760706 PMCID: PMC7371857 DOI: 10.3389/fbioe.2020.00759

Abstract

A model-based approach for the assessment of pathway dynamics is explored to characterize metabolic and signaling pathway activity changes characteristic of the dosing-dependent differences in response to methylprednisolone in muscle. To consistently compare dosing-induced changes we extend the principles of pharmacokinetics and pharmacodynamics and introduce a novel representation of pathway-level dynamic models of activity regulation. We hypothesize the emergence of dosing-dependent regulatory interactions is critical to understanding the mechanistic implications of MPL dosing in muscle. Our results indicate that key pathways, including amino acid and lipid metabolism, signal transduction, endocrine regulation, regulation of cellular functions including growth, death, motility, transport, protein degradation, and catabolism are dependent on dosing, exhibiting diverse dynamics depending on whether the drug is administered acutely of continuously. Therefore, the dynamics of drug presentation offer the possibility for the emergence of dosing-dependent models of regulation. Finally, we compared acute and chronic MPL response in muscle with liver. The comparison revealed systematic response differences between the two tissues, notably that muscle appears more prone to adapt to MPL.

Copyright © 2020 Acevedo, DuBois, Almon, Jusko and Androulakis.

Keywords: corticosteroids; dose comparison; methylprednisolone; omics; pathway analysis; tissue comparison

References

  1. Gene Regul Syst Bio. 2008 Feb 14;2:1-19 - PubMed
  2. Endocrinology. 2007 May;148(5):2209-25 - PubMed
  3. Int J Biochem Cell Biol. 2013 Oct;45(10):2163-72 - PubMed
  4. Am J Physiol Endocrinol Metab. 2005 Nov;289(5):E870-82 - PubMed
  5. Funct Integr Genomics. 2003 Dec;3(4):180-8 - PubMed
  6. Am J Physiol Endocrinol Metab. 2008 Oct;295(4):E785-97 - PubMed
  7. J Pharmacokinet Biopharm. 1986 Oct;14(5):469-93 - PubMed
  8. Nucleic Acids Res. 2018 Jan 4;46(D1):D649-D655 - PubMed
  9. Mol Pharm. 2008 Mar-Apr;5(2):328-39 - PubMed
  10. Nucleic Acids Res. 2012 May;40(9):3785-99 - PubMed
  11. Adv Exp Med Biol. 2015;872:145-76 - PubMed
  12. BMC Bioinformatics. 2011 Aug 09;12:330 - PubMed
  13. Sci Rep. 2019 May 10;9(1):7233 - PubMed
  14. Gene Regul Syst Bio. 2014 Mar 10;8:75-87 - PubMed
  15. J Pharmacol Exp Ther. 1999 Feb;288(2):720-8 - PubMed
  16. Toxicol Appl Pharmacol. 2013 Sep 15;271(3):349-62 - PubMed
  17. J Pharmacol Exp Ther. 2003 Oct;307(1):93-109 - PubMed
  18. Br J Clin Pharmacol. 1998 Mar;45(3):229-39 - PubMed
  19. Cell Rep. 2017 Oct 24;21(4):1077-1088 - PubMed
  20. Inflamm Res. 1999 Nov;48(11):557-60 - PubMed
  21. Pharmacogenomics. 2004 Jul;5(5):525-52 - PubMed
  22. Nutrition. 2002 Feb;18(2):130-3 - PubMed
  23. Curr Protoc Bioinformatics. 2005 Oct;Chapter 1:Unit 1.12 - PubMed
  24. J Pharmacokinet Pharmacodyn. 2002 Apr;29(2):103-29 - PubMed
  25. Mol Pharm. 2016 Jan 4;13(1):73-84 - PubMed
  26. J Pharmacol Exp Ther. 2008 Mar;324(3):1243-54 - PubMed
  27. Gene Regul Syst Bio. 2019 Apr 15;13:1177625019840282 - PubMed
  28. Drugs. 1978 Sep;16(3):238-55 - PubMed
  29. PLoS Med. 2008 Sep 30;5(9):e184 - PubMed
  30. Physiol Genomics. 2007 Aug 20;30(3):282-99 - PubMed
  31. PLoS One. 2013 Dec 02;8(12):e81679 - PubMed
  32. J Pharmacol Exp Ther. 2018 Oct;367(1):168-183 - PubMed
  33. Nutrition. 2013 Nov-Dec;29(11-12):1388-94 - PubMed
  34. PLoS One. 2009 Jul 10;4(7):e5992 - PubMed
  35. BMC Bioinformatics. 2010 Nov 01;11:540 - PubMed
  36. Am J Physiol Regul Integr Comp Physiol. 2008 Oct;295(4):R1031-47 - PubMed
  37. J Pharmacokinet Pharmacodyn. 2002 Feb;29(1):1-24 - PubMed
  38. BMC Bioinformatics. 2010 Oct 14;11:515 - PubMed
  39. PPAR Res. 2010;2010: - PubMed
  40. Am J Physiol. 1992 Nov;263(5 Pt 1):E928-34 - PubMed
  41. Front Hum Neurosci. 2017 Jun 20;11:316 - PubMed
  42. J Steroid Biochem Mol Biol. 2002 Dec;83(1-5):37-48 - PubMed
  43. J Investig Med. 2010 Jan;58(1):19-22 - PubMed
  44. J Endocrinol. 2005 Jan;184(1):219-32 - PubMed
  45. J Pharm Sci. 1998 Dec;87(12):1577-84 - PubMed
  46. J Pharmacokinet Biopharm. 1998 Jun;26(3):289-317 - PubMed
  47. Endocrinology. 1974 Apr;94(4):998-1002 - PubMed
  48. J Pharmacol Exp Ther. 2002 Jan;300(1):245-56 - PubMed
  49. J Am Med Inform Assoc. 2018 Feb 1;25(2):158-166 - PubMed
  50. Biopharm Drug Dispos. 2007 Sep;28(6):263-73 - PubMed
  51. J Pharmacol Exp Ther. 2008 Sep;326(3):700-16 - PubMed
  52. Clin Sci (Lond). 1998 Jun;94(6):557-72 - PubMed
  53. Biochem Biophys Res Commun. 2009 Jan 16;378(3):668-72 - PubMed
  54. PLoS One. 2013;8(3):e59726 - PubMed

Publication Types

Grant support