Display options
Share it on

Arch Anim Breed. 2020 Jul 02;63(2):211-218. doi: 10.5194/aab-63-211-2020. eCollection 2020.

The relationship between methane emission and daytime-dependent fecal archaeol concentration in lactating dairy cows fed two different diets.

Archives animal breeding

Lisa-Marie Sandberg, Georg Thaller, Solvig Görs, Björn Kuhla, Cornelia C Metges, Nina Krattenmacher

Affiliations

  1. Institute of Animal Breeding and Husbandry, Kiel University, Kiel, 24098, Germany.
  2. Institute of Nutritional Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, 18196, Germany.
  3. Chair of Nutritional Physiology and Animal Nutrition, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, 18059, Germany.

PMID: 32760788 PMCID: PMC7397718 DOI: 10.5194/aab-63-211-2020

Abstract

Archaeol is a cell membrane lipid of methanogenic archaea excreted in feces and is therefore a potential biomarker for individual methane emission (MEM). The aims of this study were to examine the potential of the fecal archaeol concentration (fArch) to be a proxy for MEM prediction in cows fed different diets and determine if the time of fecal collection affected the archaeol concentration. Thus, we investigated (i) the variation of the fArch concentration in spot samples of feces taken thrice within 8 h during respiration chamber measurements and (ii) the effect of two diets differing in nutrient composition and net energy content on the relationship between fArch and MEM in lactating cows. Two consecutive respiration trials with four primiparous and six multiparous lactating Holstein cows were performed. In the first trial (T1) at

Copyright: © 2020 Lisa-Marie Sandberg et al.

Conflict of interest statement

The authors declare that they have no conflict of interest.

References

  1. J Dairy Sci. 2009 Jun;92(6):2804-8 - PubMed
  2. Antonie Van Leeuwenhoek. 2007 May;91(4):303-14 - PubMed
  3. J Dairy Sci. 2015 Nov;98(11):7993-8008 - PubMed
  4. J Dairy Sci. 2013 Feb;96(2):971-80 - PubMed
  5. Arch Anim Nutr. 2007 Feb;61(1):10-9 - PubMed
  6. J Dairy Sci. 2015 Jun;98(6):4074-83 - PubMed
  7. Animal. 2010 Mar;4(3):351-65 - PubMed
  8. Sci Rep. 2014 Jul 31;4:5892 - PubMed
  9. Appl Environ Microbiol. 2016 Jul 15;82(15):4505-4516 - PubMed
  10. J Dairy Sci. 2012 Jun;95(6):3181-9 - PubMed
  11. J Dairy Sci. 2019 Apr;102(4):3241-3253 - PubMed
  12. J Dairy Sci. 2017 Apr;100(4):2433-2453 - PubMed
  13. Animals (Basel). 2012 Apr 13;2(2):160-83 - PubMed
  14. J Dairy Sci. 1990 Aug;73(8):2143-56 - PubMed
  15. Genome Announc. 2016 Apr 07;4(2): - PubMed
  16. Sci Rep. 2015 Oct 09;5:14567 - PubMed
  17. J Dairy Sci. 2018 Nov;101(11):10011-10021 - PubMed
  18. Arch Anim Nutr. 2015;69(3):159-76 - PubMed
  19. J Dairy Sci. 2015 Mar;98(3):1915-27 - PubMed
  20. Animal. 2013 Jun;7 Suppl 2:409-17 - PubMed
  21. J Anim Sci. 1995 Aug;73(8):2483-92 - PubMed
  22. J Dairy Sci. 2011 Dec;94(12):6122-34 - PubMed
  23. Br J Nutr. 1976 Jul;36(1):1-14 - PubMed
  24. Br J Nutr. 2014 Feb;111(4):578-85 - PubMed
  25. Animal. 2015 Sep;9(9):1431-40 - PubMed
  26. J Dairy Sci. 2002 Dec;85(12):3314-27 - PubMed
  27. J Dairy Sci. 2016 Nov;99(11):9313-9318 - PubMed
  28. J Anim Sci. 2013 Nov;91(11):5045-69 - PubMed
  29. J Dairy Sci. 2013 Feb;96(2):1211-7 - PubMed
  30. J Dairy Sci. 2014;97(6):3231-61 - PubMed

Publication Types