Display options
Share it on

Sci Adv. 2020 Aug 14;6(33):eabb9036. doi: 10.1126/sciadv.abb9036. eCollection 2020 Aug.

Noncanonical function of an autophagy protein prevents spontaneous Alzheimer's disease.

Science advances

Bradlee L Heckmann, Brett J W Teubner, Emilio Boada-Romero, Bart Tummers, Clifford Guy, Patrick Fitzgerald, Ulrike Mayer, Simon Carding, Stanislav S Zakharenko, Thomas Wileman, Douglas R Green

Affiliations

  1. Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
  2. Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
  3. School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK.
  4. Quadram Institute of Bioscience, Norwich, Norfolk, UK.
  5. Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK.

PMID: 32851186 PMCID: PMC7428329 DOI: 10.1126/sciadv.abb9036

Abstract

Noncanonical functions of autophagy proteins have been implicated in neurodegenerative conditions, including Alzheimer's disease (AD). The WD domain of the autophagy protein Atg16L is dispensable for canonical autophagy but required for its noncanonical functions. Two-year-old mice lacking this domain presented with robust β-amyloid (Aβ) pathology, tau hyperphosphorylation, reactive microgliosis, pervasive neurodegeneration, and severe behavioral and memory deficiencies, consistent with human disease. Mechanistically, we found this WD domain was required for the recycling of Aβ receptors in primary microglia. Pharmacologic suppression of neuroinflammation reversed established memory impairment and markers of disease pathology in this novel AD model. Therefore, loss of the Atg16L WD domain drives spontaneous AD in mice, and inhibition of neuroinflammation is a potential therapeutic approach for treating neurodegeneration and memory loss. A decline in expression of ATG16L in the brains of human patients with AD suggests the possibility that a similar mechanism may contribute in human disease.

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

References

  1. J Cell Sci. 2016 Aug 15;129(16):3059-66 - PubMed
  2. Front Aging Neurosci. 2016 Jul 05;8:160 - PubMed
  3. J Neurosci. 2009 Sep 23;29(38):11982-92 - PubMed
  4. J Cell Sci. 2007 Dec 1;120(Pt 23):4081-91 - PubMed
  5. Exp Mol Med. 2006 Aug 31;38(4):333-47 - PubMed
  6. Acta Neuropathol Commun. 2018 Nov 8;6(1):121 - PubMed
  7. J Neurosci. 2012 Jun 6;32(23):7852-61 - PubMed
  8. Chem Commun (Camb). 2013 Jul 4;49(52):5865-7 - PubMed
  9. Brain Behav Immun. 2017 Mar;61:306-316 - PubMed
  10. Nat Cell Biol. 2018 Dec;20(12):1338-1348 - PubMed
  11. J Neurosci. 2015 Jul 22;35(29):10510-22 - PubMed
  12. Cell. 2013 Jul 18;154(2):365-76 - PubMed
  13. Brain. 2016 Feb;139(Pt 2):509-25 - PubMed
  14. Cell. 2011 Sep 2;146(5):682-95 - PubMed
  15. Front Aging Neurosci. 2018 Feb 06;10:27 - PubMed
  16. Neuron. 2018 Mar 7;97(5):1023-1031.e7 - PubMed
  17. Am J Pathol. 2006 Jan;168(1):184-94 - PubMed
  18. Cell. 2019 Jul 25;178(3):536-551.e14 - PubMed
  19. Nature. 2019 Nov;575(7784):669-673 - PubMed
  20. EMBO Mol Med. 2016 Jun 01;8(6):595-608 - PubMed
  21. Cell. 2015 Mar 12;160(6):1061-71 - PubMed
  22. Front Aging Neurosci. 2014 May 06;6:80 - PubMed
  23. Brain Pathol. 2008 Oct;18(4):484-96 - PubMed
  24. Mol Neurobiol. 2014 Oct;50(2):534-44 - PubMed
  25. Ageing Res Rev. 2014 May;15:6-15 - PubMed
  26. Nat Cell Biol. 2015 Jul;17(7):893-906 - PubMed
  27. Exp Neurobiol. 2019 Dec 31;28(6):643-657 - PubMed
  28. Cell Death Dis. 2013 Dec 19;4:e975 - PubMed
  29. EMBO J. 2018 Feb 15;37(4): - PubMed
  30. Nature. 2002 Apr 4;416(6880):535-9 - PubMed
  31. Cell. 2017 Aug 10;170(4):649-663.e13 - PubMed
  32. J Cell Biol. 2005 Oct 10;171(1):87-98 - PubMed
  33. Cell. 2019 Jul 25;178(3):552-566.e20 - PubMed
  34. Nat Rev Mol Cell Biol. 2007 Feb;8(2):101-12 - PubMed
  35. Eur Neurol. 1998 Oct;40(3):130-40 - PubMed
  36. J Clin Invest. 2008 Jun;118(6):2190-9 - PubMed
  37. Mol Brain. 2018 Feb 20;11(1):10 - PubMed
  38. J Mol Biol. 2017 Nov 24;429(23):3561-3576 - PubMed
  39. Int J Neurosci. 2014 May;124(5):307-21 - PubMed
  40. J Neuroinflammation. 2014 Mar 13;11:48 - PubMed
  41. EMBO Rep. 2018 Jun;19(6): - PubMed
  42. J Neuroinflammation. 2011 Aug 09;8:92 - PubMed
  43. J Neurotrauma. 2018 Jun 1;35(11):1294-1303 - PubMed
  44. Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5819-24 - PubMed
  45. Front Mol Neurosci. 2018 Sep 04;11:320 - PubMed
  46. Cell. 2019 Oct 3;179(2):312-339 - PubMed
  47. Mol Neurobiol. 2018 Mar;55(3):1977-1987 - PubMed
  48. Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2295-300 - PubMed
  49. J Cell Sci. 2019 Mar 7;132(5): - PubMed
  50. Ann Neurol. 1999 Dec;46(6):860-6 - PubMed
  51. Neuron. 2017 Mar 8;93(5):1015-1034 - PubMed
  52. Curr Opin Neurobiol. 2018 Aug;51:29-36 - PubMed
  53. Acta Neuropathol Commun. 2018 Jun 29;6(1):52 - PubMed
  54. Stroke. 2018 Jan;49(1):184-192 - PubMed
  55. Autophagy. 2019 Apr;15(4):599-612 - PubMed
  56. J Alzheimers Dis. 2010;22(3):741-63 - PubMed
  57. Neuron. 2013 Sep 4;79(5):873-86 - PubMed
  58. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14164-9 - PubMed
  59. J Neuropathol Exp Neurol. 2018 Sep 1;77(9):814-826 - PubMed
  60. Autophagy. 2016 Dec;12(12):2467-2483 - PubMed
  61. Mol Neurobiol. 2013 Dec;48(3):875-82 - PubMed
  62. Sci Transl Med. 2018 Oct 31;10(465): - PubMed

Publication Types

Grant support