Display options
Share it on

Nanomaterials (Basel). 2020 Aug 27;10(9). doi: 10.3390/nano10091690.

Head-To-Head Comparison of Biological Behavior of Biocompatible Polymers Poly(Ethylene Oxide), Poly(2-Ethyl-2-Oxazoline) and Poly[N-(2-Hydroxypropyl)Methacrylamide] as Coating Materials for Hydroxyapatite Nanoparticles in Animal Solid Tumor Model.

Nanomaterials (Basel, Switzerland)

Zbynek Novy, Volodymyr Lobaz, Martin Vlk, Jan Kozempel, Petr Stepanek, Miroslav Popper, Jana Vrbkova, Marian Hajduch, Martin Hruby, Milos Petrik

Affiliations

  1. Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic.
  2. Institute of Macromolecular Chemistry AS CR, Heyrovskeho namesti 1888/2, 162 06 Prague 6, Czech Republic.
  3. Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Brehova 7, 115 19 Prague 1, Czech Republic.

PMID: 32867391 PMCID: PMC7558523 DOI: 10.3390/nano10091690

Abstract

Nanoparticles (NPs) represent an emerging platform for diagnosis and treatment of various diseases such as cancer, where they can take advantage of enhanced permeability and retention (EPR) effect for solid tumor accumulation. To improve their colloidal stability, prolong their blood circulation time and avoid premature entrapment into reticuloendothelial system, coating with hydrophilic biocompatible polymers is often essential. Most studies, however, employ just one type of coating polymer. The main purpose of this study is to head-to-head compare biological behavior of three leading polymers commonly used as "stealth" coating materials for biocompatibilization of NPs poly(ethylene oxide), poly(2-ethyl-2-oxazoline) and poly[

Keywords: animal model; hydroxyapatite; nanoparticles; poly(2-ethyl-2-oxazoline); poly(ethylene oxide); poly[N-(2-hydroxypropyl)methacrylamide]; solid tumor

References

  1. Drug Deliv Transl Res. 2019 Jun;9(3):721-734 - PubMed
  2. Curr Top Med Chem. 2010;10(12):1227-36 - PubMed
  3. Biomacromolecules. 2018 Jun 11;19(6):1732-1745 - PubMed
  4. Drug Discov Today. 2014 Dec;19(12):1945-52 - PubMed
  5. Ann Surg Oncol. 2015;22(6):1980-6 - PubMed
  6. Adv Drug Deliv Rev. 2018 May;130:17-38 - PubMed
  7. Nanoscale. 2017 Nov 9;9(43):16680-16688 - PubMed
  8. Pharmaceutics. 2018 Oct 18;10(4): - PubMed
  9. Nanomedicine (Lond). 2019 May;14(10):1323-1341 - PubMed
  10. Biomed Res Int. 2015;2015:676053 - PubMed
  11. Sci Technol Adv Mater. 2019 Apr 15;20(1):324-336 - PubMed
  12. Macromol Biosci. 2018 Jan;18(1): - PubMed
  13. J Clin Med. 2019 Dec 29;9(1): - PubMed
  14. Theranostics. 2017 Sep 26;7(17):4229-4239 - PubMed
  15. Macromol Biosci. 2016 Nov;16(11):1577-1582 - PubMed
  16. Front Pharmacol. 2018 Apr 27;9:421 - PubMed
  17. Ci Ji Yi Xue Za Zhi. 2019 Jul-Sep;31(3):163-168 - PubMed
  18. Colloids Surf B Biointerfaces. 2019 Jul 1;179:143-152 - PubMed
  19. Macromol Rapid Commun. 2019 May;40(10):e1800917 - PubMed
  20. Curr Opin Biotechnol. 2007 Feb;18(1):26-30 - PubMed
  21. Mater Sci Eng C Mater Biol Appl. 2019 May;98:1252-1276 - PubMed
  22. Nucl Med Commun. 2008 Mar;29(3):193-207 - PubMed
  23. Nanomedicine. 2017 Feb;13(2):471-482 - PubMed
  24. Theranostics. 2014 Jan 24;4(3):290-306 - PubMed
  25. Nucl Med Commun. 2017 Jul;38(7):577-586 - PubMed
  26. Biomaterials. 2017 Nov;146:1-12 - PubMed
  27. Appl Radiat Isot. 2010 Dec;68(12):2117-24 - PubMed
  28. Int J Clin Oncol. 2018 Dec;23(6):1167-1172 - PubMed
  29. PLoS One. 2012;7(11):e48976 - PubMed
  30. Theranostics. 2019 Oct 17;9(26):8073-8090 - PubMed

Publication Types

Grant support