Display options
Share it on

Front Physiol. 2020 Jul 21;11:800. doi: 10.3389/fphys.2020.00800. eCollection 2020.

Proteomic Study of Fetal Membrane: Inflammation-Triggered Proteolysis of Extracellular Matrix May Present a Pathogenic Pathway for Spontaneous Preterm Birth.

Frontiers in physiology

Jing Pan, Xiujuan Tian, Honglei Huang, Nanbert Zhong

Affiliations

  1. Sanya Maternity and Child Care Hospital, Sanya, China.
  2. Proteomic Core Facility, Oxford University, Oxford, United Kingdom.
  3. New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.

PMID: 32792973 PMCID: PMC7386131 DOI: 10.3389/fphys.2020.00800

Abstract

INTRODUCTION: Spontaneous preterm birth (sPTB), which predominantly presents as spontaneous preterm labor (sPTL) or prelabor premature rupture of membranes (PPROM), is a syndrome that accounts for 5-10% of live births annually. The long-term morbidity in surviving preterm infants is significantly higher than that in full-term neonates. The causes of sPTB are complex and not fully understood. Human placenta, the maternal and fetal interface, is an environmental core of fetal intrauterine life, mediates fetal oxygen exchange, nutrient uptake, and waste elimination and functions as an immune-defense organ. In this study, the molecular signature of preterm birth placenta was assessed and compared to full-term placenta by proteomic profiling.

MATERIALS AND METHODS: Four groups of fetal membranes (the amniochorionic membranes), with five cases in each group in the discovery study and 30 cases in each group for validation, were included: groups A: sPTL; B: PPROM; C: full-term birth (FTB); and D: full-term premature rupture of membrane (PROM). Fetal membranes were dissected and used for proteome quantification study. Maxquant and Perseus were used for protein quantitation and statistical analysis. Both fetal membranes and placental villi samples were used to validate proteomic discovery.

RESULTS: Proteomics analysis of fetal membranes identified 2,800 proteins across four groups. Sixty-two proteins show statistical differences between the preterm and full-term groups. Among these differentially expressed proteins are (1) proteins involved in inflammation (HPGD), T cell activation (PTPRC), macrophage activation (CAPG, CD14, and CD163), (2) cell adhesion (ICAM and ITGAM), (3) proteolysis (CTSG, ELANE, and MMP9), (4) antioxidant (MPO), (5) extracellular matrix (ECM) proteins (APMAP, COL4A1, LAMA2, LMNB1, LMNB2, FBLN2, and CSRP1) and (6) metabolism of glycolysis (PKM and ADPGK), fatty acid synthesis (ACOX1 and ACSL3), and energy biosynthesis (ATP6AP1 and CYBB).

CONCLUSION: Our molecular signature study of preterm fetal membranes revealed inflammation as a major event, which is inconsistent with previous findings. Proteolysis may play an important role in fetal membrane rupture. Extracellular matrix s have been altered in preterm fetal membranes due to proteolysis. Metabolism was also altered in preterm fetal membranes. The molecular changes in the fetal membranes provided a significant molecular signature for PPROM in preterm syndrome.

Copyright © 2020 Pan, Tian, Huang and Zhong.

Keywords: extracellular matrix; fetal membrane; inflammation; prelabor premature rupture of membrane; preterm birth

References

  1. Am J Obstet Gynecol. 2002 Nov;187(5):1125-30 - PubMed
  2. Hypertension. 2008 Aug;52(2):387-93 - PubMed
  3. Am J Perinatol. 2016 Feb;33(3):258-66 - PubMed
  4. Trends Pharmacol Sci. 2012 Jun;33(6):304-11 - PubMed
  5. J Obstet Gynaecol. 2018 Jul;38(5):652-657 - PubMed
  6. Prostaglandins Other Lipid Mediat. 2017 Jan;128-129:17-26 - PubMed
  7. Genes Dev. 2011 Dec 15;25(24):2579-93 - PubMed
  8. Blood. 2009 Jan 22;113(4):887-92 - PubMed
  9. Prog Lipid Res. 2017 Apr;66:50-68 - PubMed
  10. Nat Methods. 2012 Jul;9(7):671-5 - PubMed
  11. Placenta. 2015 Jan;36(1):59-68 - PubMed
  12. Semin Fetal Neonatal Med. 2018 Apr;23(2):119-125 - PubMed
  13. Placenta. 2017 Jun;54:104-110 - PubMed
  14. Am J Perinatol. 2010 Sep;27(8):631-40 - PubMed
  15. Am J Pathol. 2015 Jul;185(7):1981-90 - PubMed
  16. J Matern Fetal Neonatal Med. 2016;29(9):1525-9 - PubMed
  17. Reprod Biomed Online. 2016 Jan;32(1):14-43 - PubMed
  18. Mol Hum Reprod. 2016 Feb;22(2):143-57 - PubMed
  19. J Matern Fetal Neonatal Med. 2017 Sep;30(17):2097-2104 - PubMed
  20. Clin Microbiol Rev. 2009 Apr;22(2):240-73, Table of Contents - PubMed
  21. Front Neurosci. 2017 Apr 10;11:200 - PubMed
  22. Lab Invest. 2001 Apr;81(4):543-54 - PubMed
  23. Placenta. 2014 Nov;35(11):883-90 - PubMed
  24. Am J Obstet Gynecol. 1991 Oct;165(4 Pt 1):934-8 - PubMed
  25. Front Neurosci. 2014 Nov 25;8:366 - PubMed
  26. J Matern Fetal Neonatal Med. 2010 Apr;23(4):261-80 - PubMed
  27. BMC Pregnancy Childbirth. 2015 Feb 15;15:35 - PubMed
  28. PLoS One. 2012;7(5):e35232 - PubMed
  29. J Matern Fetal Neonatal Med. 2002 Oct;12(4):237-46 - PubMed
  30. PLoS Pathog. 2013;9(12):e1003821 - PubMed
  31. J Matern Fetal Neonatal Med. 2012 Oct;25(10):1879-83 - PubMed
  32. J Clin Endocrinol Metab. 2002 Mar;87(3):1353-61 - PubMed
  33. FASEB J. 2017 Sep;31(9):4088-4103 - PubMed
  34. Front Pharmacol. 2017 Jun 02;8:310 - PubMed
  35. Mol Cell Biochem. 1998 Nov;188(1-2):49-56 - PubMed
  36. Vopr Med Khim. 2002 Jul-Aug;48(4):378-80 - PubMed
  37. J Biol Chem. 1994 May 13;269(19):13997-4002 - PubMed
  38. BMJ. 2004 Oct 23;329(7472):962-5 - PubMed
  39. Blood. 2012 May 10;119(19):4476-9 - PubMed
  40. FEBS J. 2013 Jan;280(2):432-44 - PubMed
  41. Placenta. 2014 Dec;35(12):1021-6 - PubMed
  42. BJOG. 2005 Jun;112(6):737-42 - PubMed
  43. PLoS One. 2018 Jan 31;13(1):e0191002 - PubMed
  44. J Immunol. 2007 Mar 15;178(6):3345-51 - PubMed
  45. Vaccine. 2016 Dec 1;34(49):6047-6056 - PubMed
  46. Reprod Fertil Dev. 1999;11(4-5):255-62 - PubMed
  47. J Perinat Med. 2004;32(1):49-52 - PubMed
  48. J Matern Fetal Neonatal Med. 2011 Apr;24(4):600-5 - PubMed
  49. Am J Obstet Gynecol. 2016 Jul;215(1 Suppl):S1-S46 - PubMed
  50. Cochrane Database Syst Rev. 2015 Nov 25;(11):CD011202 - PubMed
  51. BJOG. 2016 Sep;123 Suppl 3:7-9 - PubMed
  52. Pediatr Dev Pathol. 2018 Nov-Dec;21(6):548-560 - PubMed
  53. Placenta. 2013 Jan;34(1):14-9 - PubMed
  54. Acta Biochim Pol. 2015;62(3):499-507 - PubMed
  55. Thromb Res. 2004;114(5-6):397-407 - PubMed
  56. J Clin Neonatol. 2013 Apr;2(2):61-9 - PubMed
  57. Acta Obstet Gynecol Scand. 2016 Oct;95(10):1136-42 - PubMed
  58. Placenta. 2006 Jun-Jul;27(6-7):750-7 - PubMed
  59. Clin Exp Obstet Gynecol. 2010;37(3):193-6 - PubMed
  60. Am J Reprod Immunol. 2014 Mar;71(3):241-51 - PubMed

Publication Types