Display options
Share it on

Diabetol Metab Syndr. 2020 Aug 10;12:69. doi: 10.1186/s13098-020-00576-6. eCollection 2020.

Therapeutic effects of different doses of prebiotic (isolated from S.

Diabetology & metabolic syndrome

Janina de Sales Guilarducci, Breno Augusto Ribeiro Marcelino, Isaac Filipe Moreira Konig, Tamira Maria Orlando, Mary Suzan Varaschin, Luciano José Pereira

Affiliations

  1. Departamento de Ciências da Saúde - DSA, Universidade Federal de Lavras - UFLA, 3037, Lavras, 37200-000 Brazil.
  2. Departamente de Medicina Veterinária - DMV, Universidade Federal de Lavras - UFLA, 3037, Lavras, 37200-000 Brazil.

PMID: 32793305 PMCID: PMC7418400 DOI: 10.1186/s13098-020-00576-6

Abstract

BACKGROUND: The regular intake of fiber generates numerous health benefits. However, the efficacy depends on the duration of consumption and the ingested dose. Studies investigating the optimal dose are of interest to enable the inclusion of fiber in the routine treatment of diabetic patients.

OBJECTIVE: We aimed to evaluate the effects of different doses of β-glucan (BG-isolated from

METHODS: Forty animals were randomly divided into six groups receiving 0 mg/kg, 10 mg/kg, 20 mg/kg, or 40 mg/kg BG daily for 4 weeks or fish oil derivative [1000 mg/kg of omega-3 fatty acids (n-3)] for the same period. One additional group was composed of healthy controls. Serum metabolic and immunological parameters were evaluated by colorimetric and ELISA assays respectively. Histopathological analysis of the liver, small intestine and pancreas were also conducted. Significant changes due to BG intake were set into regression models with second-degree fit in order to estimate the optimal BG dose to achieve health benefits.

RESULTS: The animals that ingested BG had lower food and water intake (p < 0.05) than the negative control group (0 mg/kg). However, consumption was still elevated in comparison to healthy controls. Blood glucose and serum levels of total cholesterol, LDL-c, and TG (p < 0.05) reduced in comparison to diabetic animals without treatment (better or similar to n-3 group depending on dose), but did not reach normal levels (in comparison to healthy controls). HDL-c was not different (p > 0.05) among all groups. These reductions were already seen with the lowest dose of 10 mg/kg. On average, the serum levels of the hepatic enzymes ALT and AST were 40% and 60% lower in the BG groups in comparison to diabetic animals without treatment (better results than n-3 group). The group receiving 40 mg/kg reached similar values of healthy controls for ALT; whereas the same result occurred from the dose of 10 mg/kg for AST. The ideal dose, estimated from the mean of all metabolic parameters was approximately 30 mg/kg/day. Regarding the immunological profile, TNF-α significantly decreased in the BG groups compared to controls (p < 0.05), reaching better values than n-3 group and similar to healthy controls. No significant differences were found between the groups in IL-1β or IL-10 (p > 0.05). No histological changes were found in the pancreas, liver, or intestine due to treatment among diabetic animals.

CONCLUSIONS: BG significantly reduced blood glucose as well as serum total cholesterol, LDL-c and TG. There was a hepatoprotective effect due to the reduction in ALT and AST and a reduction in TNF-α, indicating a modulation of the immune response. In general, BG effects were better than n-3 supplement (or at least comparable) depending on the dose.

© The Author(s) 2020.

Keywords: Beta-glucans; Dietary fibers; Metabolism; Prebiotics

Conflict of interest statement

Competing interestsThe authors declare that they have no competing interests.

References

  1. Pharmacol Res. 2005 Feb;51(2):117-23 - PubMed
  2. Curr Opin Endocrinol Diabetes Obes. 2012 Apr;19(2):81-7 - PubMed
  3. Nurs Clin North Am. 2017 Dec;52(4):679-692 - PubMed
  4. J Nutr Biochem. 2010 Aug;21(8):695-701 - PubMed
  5. Regul Toxicol Pharmacol. 2018 Feb;92:429-438 - PubMed
  6. J Anim Physiol Anim Nutr (Berl). 2017 Apr;101(2):349-358 - PubMed
  7. Diabetes Res Clin Pract. 2019 Feb;148:234-239 - PubMed
  8. Drugs. 2015 Apr;75(6):577-87 - PubMed
  9. Sultan Qaboos Univ Med J. 2011 May;11(2):179-86 - PubMed
  10. J Clin Lipidol. 2009 May-Jun;3(3):154-8 - PubMed
  11. Obes Rev. 2016 Apr;17(4):297-312 - PubMed
  12. Nutr Res. 2016 Jun;36(6):541-52 - PubMed
  13. Br J Nutr. 1983 Sep;50(2):215-24 - PubMed
  14. Circulation. 2014 Sep 23;130(13):1110-30 - PubMed
  15. Nutr Hosp. 2014 Jan 01;31(1):170-7 - PubMed
  16. Nutr Hosp. 2015 Jul 01;32(1):256-64 - PubMed
  17. Lancet. 2014 Jan 4;383(9911):69-82 - PubMed
  18. Br J Nutr. 1996 Mar;75(3):339-51 - PubMed
  19. Neurogastroenterol Motil. 2008 Jun;20(6):649-59 - PubMed
  20. Front Endocrinol (Lausanne). 2020 Mar 13;11:116 - PubMed
  21. Br J Nutr. 2010 Feb;103(3):422-8 - PubMed
  22. Prostaglandins Leukot Essent Fatty Acids. 2000 Dec;63(6):351-62 - PubMed
  23. Diabetes. 2012 Feb;61(2):364-71 - PubMed
  24. J Clin Med Res. 2014 Oct;6(5):321-6 - PubMed
  25. Int J Immunopharmacol. 1986;8(3):313-21 - PubMed
  26. Neurosci Lett. 2016 Jan 12;611:28-32 - PubMed
  27. Nutr Rev. 2013 Dec;71(12):790-801 - PubMed
  28. Am J Clin Nutr. 2014 Dec;100(6):1413-21 - PubMed
  29. Eur J Clin Nutr. 2013 Apr;67(4):310-7 - PubMed
  30. Mycobiology. 2011 Sep;39(3):187-93 - PubMed
  31. Br J Nutr. 2016 Oct;116(8):1369-1382 - PubMed
  32. Diabetes Metab J. 2018 Apr;42(2):101-116 - PubMed
  33. Diabetes Care. 2007 Apr;30(4):1012-26 - PubMed
  34. Nutr Res Rev. 2018 Jun;31(1):35-51 - PubMed
  35. Int J Mol Sci. 2017 Sep 05;18(9): - PubMed
  36. Cardiovasc Diabetol. 2017 Apr 14;16(1):50 - PubMed
  37. Appetite. 2009 Dec;53(3):338-44 - PubMed
  38. Int J Environ Res Public Health. 2015 Apr 29;12(5):4726-38 - PubMed
  39. Lipids. 2001 Dec;36(12):1331-6 - PubMed
  40. Int J Mol Sci. 2017 Dec 07;18(12): - PubMed
  41. Diabetes Res Clin Pract. 2018 Apr;138:271-281 - PubMed
  42. J Clin Endocrinol Metab. 2009 Dec;94(12):4679-87 - PubMed
  43. J Pharmacol Sci. 2012;119(3):205-13 - PubMed
  44. Clin Chem. 1972 Jun;18(6):499-502 - PubMed
  45. Food Chem Toxicol. 2003 Aug;41(8):1089-102 - PubMed
  46. Expert Rev Anti Infect Ther. 2010 Mar;8(3):339-52 - PubMed
  47. Lipids Health Dis. 2017 Jul 5;16(1):132 - PubMed
  48. J Nutr Metab. 2012;2012:851362 - PubMed
  49. Food Funct. 2016 Mar;7(3):1413-28 - PubMed
  50. J Clin Invest. 2017 May 1;127(5):1757-1771 - PubMed
  51. Science. 2013 Oct 25;342(6157):447-53 - PubMed
  52. Nutrients. 2016 Dec 17;8(12): - PubMed
  53. Gut. 2009 Aug;58(8):1091-103 - PubMed
  54. EPMA J. 2019 Oct 29;10(4):317-335 - PubMed
  55. Molecules. 2019 Mar 30;24(7): - PubMed
  56. Annu Rev Food Sci Technol. 2016;7:167-90 - PubMed
  57. Nutrients. 2017 Sep 12;9(9): - PubMed
  58. Nutrients. 2017 Sep 14;9(9): - PubMed
  59. PLoS One. 2015 Aug 20;10(8):e0134742 - PubMed
  60. J Agric Food Chem. 2018 Jan 24;66(3):621-629 - PubMed
  61. Int J Mol Sci. 2018 Jun 21;19(7): - PubMed
  62. J Atheroscler Thromb. 1996;2(2):107-9 - PubMed
  63. Nutrients. 2016 Jan 13;8(1): - PubMed
  64. J Korean Med Sci. 2006 Oct;21(5):781-9 - PubMed
  65. J Am Assoc Lab Anim Sci. 2010 Jan;49(1):40-4 - PubMed
  66. Sci Transl Med. 2019 Jun 12;11(496): - PubMed
  67. Nat Rev Gastroenterol Hepatol. 2017 Aug;14(8):491-502 - PubMed
  68. Int J Mol Sci. 2020 Feb 24;21(4): - PubMed
  69. Mar Drugs. 2019 Jun 22;17(6): - PubMed
  70. J Endocrinol. 2015 Mar;224(3):R97-106 - PubMed
  71. Nutrients. 2018 Feb 28;10(3): - PubMed
  72. Metabolism. 1989 Oct;38(10):946-56 - PubMed
  73. J Sci Food Agric. 2017 Sep;97(12):4250-4257 - PubMed
  74. J Diabetes Investig. 2017 Mar;8(2):227-234 - PubMed
  75. Molecules. 2012 Dec 03;17(12):14298-309 - PubMed
  76. Nutrients. 2017 Dec 01;9(12): - PubMed
  77. J Agric Food Chem. 2017 Nov 8;65(44):9665-9674 - PubMed
  78. Curr Opin Lipidol. 2000 Feb;11(1):49-56 - PubMed
  79. Molecules. 2020 Apr 16;25(8): - PubMed
  80. J Diabetes Complications. 2015 Nov-Dec;29(8):1272-6 - PubMed

Publication Types