Display options
Share it on

Transplant Direct. 2020 Jul 24;6(8):e589. doi: 10.1097/TXD.0000000000001012. eCollection 2020 Aug.

Cellular Mechanisms of Rejection of Optic and Sciatic Nerve Transplants: An Observational Study.

Transplantation direct

Merve Yonar, Mayuko Uehara, Naima Banouni, Vivek Kasinath, Xiaofei Li, Liwei Jiang, Jing Zhao, Fengfeng Bei, Su Ryon Shin, Curtis L Cetrulo, Nasim Annabi, Reza Abdi

Affiliations

  1. Transplantation Research Center, Renal Division, Brigham and Women's Hospital/Harvard Medical School, Boston, MA.
  2. Department of Neurosurgery, Brigham and Women's Hospital/Harvard Medical School, Cambridge, MA.
  3. Division of Engineering in Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA.
  4. Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA.
  5. Chemical and Biomolecular Engineering Department and Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA.

PMID: 32766437 PMCID: PMC7382554 DOI: 10.1097/TXD.0000000000001012

Abstract

BACKGROUND: Organ transplantation is a standard therapeutic strategy for irreversible organ damage, but the utility of nerve transplantation remains generally unexplored, despite its potential benefit to a large patient population. Here, we aimed to establish a feasible preclinical mouse model for understanding the cellular mechanisms behind the rejection of peripheral and optic nerves.

METHODS: We performed syngenic and allogenic transplantation of optic and sciatic nerves in mice by inserting the nerve grafts inside the kidney capsule, and we assessed the allografts for signs of rejection through 14 d following transplantation. Then, we assessed the efficacy of CTLA4 Ig, Rapamycin, and anti-CD3 antibody in suppressing immune cell infiltration of the nerve allografts.

RESULTS: By 3 d posttransplantation, both sciatic and optic nerves transplanted from BALB/c mice into C57BL/6J recipients contained immune cell infiltrates, which included more CD11b

CONCLUSIONS: These findings establish the feasibility of a preclinical allogenic nerve transplantation model and provide the basis for future testing of directed, high-intensity immunosuppression in these mice.

Copyright © 2020 The Author(s). Transplantation Direct. Published by Wolters Kluwer Health, Inc.

Conflict of interest statement

The authors declare no conflicts of interest.

References

  1. Plast Reconstr Surg. 2013 May;131(5):1069-76 - PubMed
  2. Transplantation. 2018 Jul;102(7):1188-1194 - PubMed
  3. ScientificWorldJournal. 2012;2012:413091 - PubMed
  4. Nat Rev Immunol. 2006 Apr;6(4):329-33 - PubMed
  5. J Clin Ethics. 2016 Spring;27(1):64-7 - PubMed
  6. Eye Brain. 2018 Oct 24;10:85-99 - PubMed
  7. Bull World Health Organ. 2004 Nov;82(11):844-51 - PubMed
  8. Am J Transplant. 2013 Jul;13(7):1655-64 - PubMed
  9. Br J Anaesth. 2012 Jan;108 Suppl 1:i29-42 - PubMed
  10. J Vis Exp. 2007;(9):404 - PubMed
  11. Plast Reconstr Surg. 2016 Dec;138(6):1297-1308 - PubMed
  12. Stem Cells Dev. 2018 Jan 1;27(1):35-43 - PubMed
  13. PLoS One. 2018 Jun 27;13(6):e0199254 - PubMed
  14. Nature. 2006 May 11;441(7090):235-8 - PubMed
  15. Toxicol Pathol. 2011 Jan;39(1):22-35 - PubMed
  16. J Neurol Sci. 1990 Apr;96(1):75-88 - PubMed
  17. J Neural Eng. 2012 Dec;9(6):066006 - PubMed
  18. Diabetes. 2008 Jul;57(7):1759-67 - PubMed
  19. Arch Ophthalmol. 2010 Aug;128(8):1059-64 - PubMed
  20. Tissue Eng. 2004 Nov-Dec;10(11-12):1641-51 - PubMed
  21. J Immunol. 2018 May 15;200(10):3599-3611 - PubMed
  22. Eye (Lond). 2017 Feb;31(2):179-184 - PubMed
  23. Microsc Res Tech. 2002 Jul 1;58(1):52-8 - PubMed
  24. J Immunol. 2010 Mar 15;184(6):2939-48 - PubMed
  25. Cell Res. 2010 May;20(5):510-8 - PubMed
  26. Cancer Res. 2013 Apr 1;73(7):2322-32 - PubMed
  27. Int J Mol Sci. 2016 Dec 14;17(12): - PubMed
  28. Brain Res. 2009 Sep 1;1287:47-57 - PubMed
  29. Crit Care Clin. 2009 Jan;25(1):165-84, ix - PubMed
  30. Semin Plast Surg. 2007 Nov;21(4):242-9 - PubMed
  31. Am J Transplant. 2012 Apr;12(4):846-55 - PubMed
  32. Semin Cancer Biol. 2017 Jun;44:60-66 - PubMed
  33. Cell Death Dis. 2016 Jan 21;7:e2062 - PubMed
  34. Am J Transplant. 2011 Feb;11(2):348-55 - PubMed
  35. J Reconstr Microsurg. 2007 Nov;23(8):511-20 - PubMed
  36. Dis Markers. 2013;35(5):573-9 - PubMed
  37. J Heart Lung Transplant. 2003 Jun;22(6):616-24 - PubMed
  38. J Leukoc Biol. 2014 Aug;96(2):283-93 - PubMed
  39. Int J Mol Sci. 2017 Jan 05;18(1): - PubMed
  40. J Clin Invest. 2018 Nov 1;128(11):4770-4786 - PubMed
  41. ACS Nano. 2017 Nov 28;11(11):11041-11046 - PubMed
  42. Transplantation. 1979 Aug;28(2):103-6 - PubMed
  43. Med Devices (Auckl). 2014 Dec 01;7:405-24 - PubMed
  44. Neurol Res. 2016 Dec;38(12):1094-1101 - PubMed
  45. Rev Neurol Dis. 2008 Spring;5(2):73-81 - PubMed
  46. Transplantation. 2013 Oct 27;96(8):689-96 - PubMed
  47. Exp Neurol. 2010 May;223(1):77-85 - PubMed
  48. Curr Rev Musculoskelet Med. 2014 Mar;7(1):83-8 - PubMed
  49. Clin Transplant. 2013 May-Jun;27(3):330-7 - PubMed
  50. Transpl Immunol. 2008 Jul;19(3-4):197-201 - PubMed
  51. Clin Lab Med. 2019 Mar;39(1):87-106 - PubMed
  52. J Exp Med. 2002 May 20;195(10):1257-66 - PubMed
  53. Br J Ophthalmol. 2009 Sep;93(9):1134-40 - PubMed
  54. Hum Gene Ther. 2016 Aug;27(8):580-97 - PubMed

Publication Types