Display options
Share it on

Pharmaceuticals (Basel). 2020 Aug 21;13(9). doi: 10.3390/ph13090206.

Metformin Restores the Drug Sensitivity of MCF-7 Cells Resistant Derivates via the Cooperative Modulation of Growth and Apoptotic-Related Pathways.

Pharmaceuticals (Basel, Switzerland)

Danila Sorokin, Yuri Shchegolev, Alexander Scherbakov, Oxana Ryabaya, Margarita Gudkova, Lev Berstein, Mikhail Krasil'nikov

Affiliations

  1. Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, Moscow 115522, Russia.
  2. Department of Experimental Diagnostic and Tumor Therapy, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, Moscow 115522, Russia.
  3. Scientific Lab of Subcellular Technologies with the Group of Oncoendocrinilogy, N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg 197758, Russia.

PMID: 32825760 PMCID: PMC7558383 DOI: 10.3390/ph13090206

Abstract

The phenomenon of the primary or acquired resistance of cancer cells to antitumor drugs is among the key problems of oncology. For breast cancer, the phenomenon of the resistance to hormonal or target therapy may be based on the numerous mechanisms including the loss or mutation of estrogen receptor, alterations of antiapoptotic pathways, overexpression of growth-related signaling proteins, etc. The perspective approaches for overcoming the resistance may be based on the usage of compounds such as inhibitors of the cell energetic metabolism. Among the latter, the antidiabetic drug metformin exerts antitumor activity via the activation of AMPK and the subsequent inhibition of mTOR signaling. The experiments were performed on the ERα-positive MCF-7 breast cancer cells, the MCF-7 sublines resistant to tamoxifen (MCF-7/T) and rapamycin (MCF-7/Rap), and on triple-negative MDA-MB-231 breast cancer cells. We have demonstrated metformin's ability to enhance the cytostatic activity of the tamoxifen and rapamycin on both parent MCF-7 cells and MCF-7-resistant derivates mediated via the suppression of mTOR signaling and growth-related transcriptional factors. The cooperative effect of metformin and tested drugs was realized in an estrogen-independent manner, and, in the case of tamoxifen, was associated with the activation of apoptotic cell death. Similarly, the stimulation of apoptosis under metformin/tamoxifen co-treatment was shown to occur in the MCF-7 cells after steroid depletion as well as in the ERα-negative MDA-MB-231 cells. We conclude that metformin co-treatment may be used for the increase and partial restoration of the cancer cell sensitivity to hormonal and target drugs. Moreover, the combination of metformin with tamoxifen induces the apoptotic death in the ERα-negative breast cancer cells opening the additional perspectives in the treatment of estrogen-independent breast tumors.

Keywords: AP-1—the transcription factor activator protein 1 (IPR000837); NF-κB—the nuclear factor kappa-light-chain-enhancer of activated B cells (IPR030495); breast cancer; cancer; metformin; resistance; signaling pathways

References

  1. Molecules. 2018 Aug 06;23(8): - PubMed
  2. Adv Biol Regul. 2018 May;68:13-30 - PubMed
  3. Breast Cancer. 2018 Jul;25(4):392-401 - PubMed
  4. J Clin Invest. 2010 Aug;120(8):2858-66 - PubMed
  5. Mol Cell. 2003 Mar;11(3):695-707 - PubMed
  6. NPJ Breast Cancer. 2019 Apr 10;5:13 - PubMed
  7. Spermatogenesis. 2011 Apr;1(2):121-122 - PubMed
  8. Cancer Res. 2006 Feb 1;66(3):1500-8 - PubMed
  9. Eur J Pharmacol. 2018 Sep 5;834:188-196 - PubMed
  10. Cancer Prev Res (Phila). 2010 Nov;3(11):1451-61 - PubMed
  11. J Clin Pathol. 2013 Jun;66(6):478-84 - PubMed
  12. Regul Toxicol Pharmacol. 2018 Nov;99:200-212 - PubMed
  13. Breast Cancer Res Treat. 2019 Feb;173(3):489-497 - PubMed
  14. PLoS One. 2014 May 23;9(5):e98207 - PubMed
  15. Biomed Res Int. 2015;2015:690492 - PubMed
  16. PLoS One. 2014 Sep 25;9(9):e108444 - PubMed
  17. Oncol Rep. 2008 Sep;20(3):581-7 - PubMed
  18. Int J Mol Sci. 2018 Sep 20;19(10): - PubMed
  19. Oncol Rep. 2016 May;35(5):2553-60 - PubMed
  20. Front Pharmacol. 2018 Jan 10;8:979 - PubMed
  21. Cancer Res. 2004 Jan 1;64(1):31-4 - PubMed
  22. Oncogene. 2015 Jul;34(28):3617-26 - PubMed
  23. Cancer Res. 2006 Nov 1;66(21):10269-73 - PubMed
  24. Int J Cancer. 2017 Jul 15;141(2):220-230 - PubMed
  25. Mol Cell Endocrinol. 2015 Dec 15;418 Pt 3:220-34 - PubMed
  26. BMC Cancer. 2014 Mar 11;14:172 - PubMed
  27. Int J Oncol. 2007 Jun;30(6):1407-12 - PubMed
  28. Dev Reprod. 2019 Jun;23(2):119-128 - PubMed
  29. Future Oncol. 2009 Jun;5(5):581-5 - PubMed
  30. Cancer Chemother Pharmacol. 2018 Apr;81(4):745-754 - PubMed
  31. Mol Cancer. 2010 Feb 09;9:33 - PubMed
  32. Int J Biol Sci. 2015 Apr 11;11(5):618-28 - PubMed
  33. Arzneimittelforschung. 1989 Jul;39(7):747-9 - PubMed
  34. Cell Oncol (Dordr). 2018 Dec;41(6):637-650 - PubMed
  35. Transl Oncol. 2014 Dec;7(6):741-51 - PubMed
  36. Ann Oncol. 2018 Aug 1;29(8):1634-1657 - PubMed
  37. Cancer Cell. 2018 May 14;33(5):801-815 - PubMed
  38. Trends Pharmacol Sci. 2018 Oct;39(10):867-878 - PubMed
  39. IUBMB Life. 2016 Apr;68(4):281-92 - PubMed
  40. Oncotarget. 2015 May 20;6(14):12748-62 - PubMed
  41. Breast Cancer Res Treat. 2011 Jul;128(1):109-17 - PubMed
  42. Nat Rev Clin Oncol. 2014 Aug;11(8):473-81 - PubMed
  43. Cell Cycle. 2009 Mar 15;8(6):909-15 - PubMed
  44. Cancer Lett. 2005 Jun 28;224(2):203-12 - PubMed
  45. BMC Cancer. 2017 Mar 29;17(1):232 - PubMed
  46. Breast Cancer Res. 2014 Sep 17;16(5):431 - PubMed
  47. J Cell Sci. 2002 Jan 1;115(Pt 1):141-51 - PubMed
  48. Oncogene. 2003 Oct 20;22(47):7316-39 - PubMed
  49. Drug Resist Updat. 2019 Sep;46:100645 - PubMed
  50. Tumour Biol. 2016 Jul;37(7):8587-97 - PubMed
  51. J Thorac Oncol. 2018 Nov;13(11):1692-1704 - PubMed
  52. Cancer Discov. 2013 Jun;3(6):658-73 - PubMed

Publication Types

Grant support