Display options
Share it on

Environ Epidemiol. 2020 Jul 16;4(4):e098. doi: 10.1097/EE9.0000000000000098. eCollection 2020 Aug.

A spatial joint analysis of metal constituents of ambient particulate matter and mortality in England.

Environmental epidemiology (Philadelphia, Pa.)

Aurore Lavigne, Anna Freni-Sterrantino, Daniela Fecht, Silvia Liverani, Marta Blangiardo, Kees de Hoogh, John Molitor, Anna L Hansell

Affiliations

  1. Université Lille 3, UFR MIME, Domaine Universitaire du Pont de Bois, Villeneuve d'ascq Cedex, France.
  2. Small Area Health Statistics Unit, Imperial College London, United Kingdom.
  3. School of Mathematical Sciences, Queen Mary University of London, United Kingdom.
  4. Department of Epidemiology and Biostatistics, Imperial College London, United Kingdom.
  5. Swiss Tropical and Public Health Institute, Basel, Switzerland.
  6. University of Basel, Basel, Switzerland.
  7. School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon.

PMID: 32832837 PMCID: PMC7423532 DOI: 10.1097/EE9.0000000000000098

Abstract

Few studies have investigated associations between metal components of particulate matter on mortality due to well-known issues of multicollinearity. Here, we analyze these exposures jointly to evaluate their associations with mortality on small area data. We fit a Bayesian profile regression (BPR) to account for the multicollinearity in the elemental components (iron, copper, and zinc) of PM

Copyright © 2020 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of The Environmental Epidemiology. All rights reserved.

Keywords: Bayesian profile regression; Clustering; Correlation; Multipollutant effect; Particulate matter elements

Conflict of interest statement

The authors declare that they have no conflicts of interest with regard to the content of this report.

References

  1. Eur J Public Health. 2015 Apr;25(2):324-9 - PubMed
  2. Environ Int. 2014 Jan;62:41-7 - PubMed
  3. BMJ Open. 2019 Dec 3;9(12):e030140 - PubMed
  4. Environ Pollut. 2019 Apr;247:874-882 - PubMed
  5. Curr Environ Health Rep. 2017 Dec;4(4):481-490 - PubMed
  6. Biostatistics. 2010 Jul;11(3):484-98 - PubMed
  7. J Toxicol. 2011;2011:487074 - PubMed
  8. Lancet. 2002 Oct 19;360(9341):1233-42 - PubMed
  9. Environ Health Perspect. 2008 Feb;116(2):196-202 - PubMed
  10. Environ Int. 2015 Sep;82:76-84 - PubMed
  11. Environ Sci Technol. 2013;47(23):13210-1 - PubMed
  12. Environ Sci Technol. 2013 May 7;47(9):4357-64 - PubMed
  13. Environ Health Perspect. 2015 Jun;123(6):549-56 - PubMed
  14. Environ Int. 2017 Dec;109:146-154 - PubMed
  15. Environ Res. 2017 Apr;154:226-233 - PubMed
  16. Environ Int. 2017 Dec;109:89-100 - PubMed
  17. J Public Health (Oxf). 2006 Dec;28(4):379-83 - PubMed
  18. J Stat Softw. 2015 Mar 20;64(7):1-30 - PubMed
  19. Environ Int. 2015 Feb;75:151-8 - PubMed
  20. Environmetrics. 2013 Dec 1;24(8):501-517 - PubMed
  21. Environ Health Perspect. 2011 Jan;119(1):84-91 - PubMed
  22. Epidemiology. 2015 Jul;26(4):565-74 - PubMed
  23. Environ Int. 2015 Nov;84:181-92 - PubMed
  24. J Expo Sci Environ Epidemiol. 2016 Mar-Apr;26(2):125-32 - PubMed
  25. BMC Med Res Methodol. 2013 Oct 23;13:129 - PubMed
  26. Circulation. 2010 Jun 1;121(21):2331-78 - PubMed
  27. Environ Sci Technol. 2013 Jun 4;47(11):5778-86 - PubMed
  28. Curr Environ Health Rep. 2018 Mar;5(1):59-69 - PubMed
  29. Am J Epidemiol. 1995 Feb 1;141(3):277-8 - PubMed
  30. Environ Health Perspect. 2011 Aug;119(8):1130-5 - PubMed
  31. Environ Res. 2018 Jan;160:247-255 - PubMed
  32. Environ Int. 2014 May;66:97-106 - PubMed
  33. Am J Respir Crit Care Med. 2009 Jun 15;179(12):1115-20 - PubMed
  34. Circulation. 2004 Jan 6;109(1):71-7 - PubMed
  35. Environ Int. 2019 Aug;129:145-153 - PubMed
  36. Environ Health Perspect. 2012 May;120(5):708-14 - PubMed
  37. Res Rep Health Eff Inst. 2015 Jun;(183 Pt 1-2):51-113 - PubMed

Publication Types

Grant support