Display options
Share it on

ACS Pharmacol Transl Sci. 2020 Jul 24;3(4):759-772. doi: 10.1021/acsptsci.0c00031. eCollection 2020 Aug 14.

Picomolar Affinity Antagonist and Sustained Signaling Agonist Peptide Ligands for the Adrenomedullin and Calcitonin Gene-Related Peptide Receptors.

ACS pharmacology & translational science

Jason M Booe, Margaret L Warner, Augen A Pioszak

Affiliations

  1. Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States.

PMID: 32832875 PMCID: PMC7432658 DOI: 10.1021/acsptsci.0c00031

Abstract

The calcitonin receptor-like class B G protein-coupled receptor (CLR) mediates adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) functions including vasodilation, cardioprotection, and nociception. Receptor activity-modifying proteins (RAMP1-3) form heterodimers with CLR and determine its peptide ligand selectivity through an unresolved mechanism. The CGRP (RAMP1:CLR) and AM (RAMP2/3:CLR) receptors are proven or promising drug targets, but short AM and CGRP plasma half-lives limit their therapeutic utility. Here, we used synthetic peptide combinatorial library and rational design approaches to probe the ligand selectivity determinants and develop truncated AM and CGRP antagonist variants with receptor extracellular domain binding affinities that were enhanced ∼1000-fold into the low nanomolar range. Receptor binding studies and a high-resolution crystal structure of a novel library-identified AM variant bound to the RAMP2-CLR extracellular domain complex explained the increased affinities and defined roles for AM Lys46 and RAMP modulation of CLR conformation in the ligand selectivity mechanism. In longer AM and CGRP scaffolds that also bind the CLR transmembrane domain, the variants generated picomolar affinity antagonists, one with an estimated 12.5 h CGRP receptor residence time, and sustained signaling agonists "ss-AM" and "ss-CGRP" that exhibited persistent cAMP signaling after ligand washout. Sustained signaling was demonstrated in primary human umbilical vein endothelial cells and the SK-N-MC cell line, which endogenously express AM and CGRP receptors, respectively. This work clarifies the RAMP-modulated CLR ligand selectivity mechanism and provides AM and CGRP variants that are valuable pharmacological tools and may have potential as long-acting therapeutics.

Copyright © 2020 American Chemical Society.

Conflict of interest statement

The authors declare the following competing financial interest(s): A.A.P. is the inventor on a patent for AM and CGRP variants described herein.

References

  1. Nature. 2018 Sep;561(7724):492-497 - PubMed
  2. Mol Cell. 2015 Jun 18;58(6):1040-52 - PubMed
  3. Br J Pharmacol. 2002 Jul;136(5):784-92 - PubMed
  4. Nature. 1998 May 28;393(6683):333-9 - PubMed
  5. Protein Sci. 2013 Dec;22(12):1775-85 - PubMed
  6. Front Physiol. 2018 Sep 19;9:1249 - PubMed
  7. Cell. 2018 May 17;173(5):1083-1097.e22 - PubMed
  8. Nat Chem Biol. 2009 Oct;5(10):734-42 - PubMed
  9. Regul Pept. 1985 Mar;10(2-3):189-97 - PubMed
  10. Peptides. 2019 Jan;111:47-54 - PubMed
  11. Mol Pharmacol. 2006 Dec;70(6):1984-91 - PubMed
  12. Br J Pharmacol. 2013 May;169(1):143-55 - PubMed
  13. Front Immunol. 2018 Feb 19;9:292 - PubMed
  14. Nat Rev Drug Discov. 2006 Sep;5(9):730-9 - PubMed
  15. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42 - PubMed
  16. Neurochem Int. 2007 Oct;51(5):254-60 - PubMed
  17. J Med Chem. 2016 Jun 23;59(12):5695-705 - PubMed
  18. Drug Discov Today. 2005 Mar 15;10(6):417-27 - PubMed
  19. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55 - PubMed
  20. ACS Pharmacol Transl Sci. 2020 Mar 20;3(2):263-284 - PubMed
  21. Eur J Pharmacol. 2016 Feb 15;773:24-31 - PubMed
  22. Med Res Rev. 2014 Jul;34(4):856-92 - PubMed
  23. Peptides. 2014 Jul;57:118-21 - PubMed
  24. Drug Discov Today. 2016 Jan;21(1):90-96 - PubMed
  25. Methods Enzymol. 1997;276:307-26 - PubMed
  26. Dig Dis Sci. 2016 Mar;61(3):872-80 - PubMed
  27. Tissue Barriers. 2016 Aug 25;4(4):e1228439 - PubMed
  28. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):615-9 - PubMed
  29. J Biol Chem. 2018 Oct 12;293(41):15840-15854 - PubMed
  30. J Clin Endocrinol Metab. 1997 Jan;82(1):95-100 - PubMed
  31. Oncotarget. 2017 Feb 28;8(9):15744-15762 - PubMed
  32. Physiol Rev. 2014 Oct;94(4):1099-142 - PubMed
  33. Br J Pharmacol. 2018 Jan;175(1):3-17 - PubMed
  34. J Cardiovasc Pharmacol. 2010 Oct;56(4):413-9 - PubMed
  35. Mol Endocrinol. 2008 Jan;22(1):156-66 - PubMed
  36. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 - PubMed
  37. Peptides. 2011 May;32(5):1060-7 - PubMed
  38. Mol Pharmacol. 2018 Apr;93(4):355-367 - PubMed
  39. Cell Death Dis. 2019 Feb 11;10(2):116 - PubMed
  40. Pain. 2017 Apr;158(4):543-559 - PubMed
  41. Eur J Pharmacol. 2015 Oct 5;764:140-148 - PubMed
  42. Mol Pharmacol. 2015 Oct;88(4):779-90 - PubMed
  43. ACS Pharmacol Transl Sci. 2020 Feb 26;3(2):296-304 - PubMed
  44. J Mol Biol. 2020 Mar 27;432(7):1996-2014 - PubMed
  45. Circulation. 2017 Jul 25;136(4):367-383 - PubMed
  46. FEBS Lett. 1999 Apr 1;448(1):111-4 - PubMed
  47. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 - PubMed
  48. Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12309-12314 - PubMed
  49. Br J Pharmacol. 2010 Oct;161(3):488-508 - PubMed
  50. Biol Reprod. 2017 Sep 1;97(3):466-477 - PubMed
  51. J Exp Med. 2013 Oct 21;210(11):2161-70 - PubMed
  52. Eur J Heart Fail. 2019 Feb;21(2):163-171 - PubMed
  53. Nat Rev Neurol. 2018 Jun;14(6):338-350 - PubMed
  54. Biotechniques. 1992 Dec;13(6):901-5 - PubMed

Publication Types

Grant support