Display options
Share it on

Sci Rep. 2020 Sep 02;10(1):14448. doi: 10.1038/s41598-020-71177-6.

Controlling oleogel crystallization using ultrasonic standing waves.

Scientific reports

Fabio Valoppi, Ari Salmi, Miika Ratilainen, Luisa Barba, Tuomas Puranen, Oskari Tommiska, Petteri Helander, Jesse Heikkilä, Edward Haeggström

Affiliations

  1. Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66, 00014, Helsinki, Finland. [email protected].
  2. Faculty of Agriculture and Forestry, Helsinki Institute of Sustainability Science, University of Helsinki, 00014, Helsinki, Finland. [email protected].
  3. Electronics Research Laboratory, Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, P.O. Box 64, 00014, Helsinki, Finland. [email protected].
  4. Electronics Research Laboratory, Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, P.O. Box 64, 00014, Helsinki, Finland.
  5. Istituto di Cristallografia, Consiglio Nazionale Delle Ricerche, 34100, Trieste, Italy.

PMID: 32879336 PMCID: PMC7468300 DOI: 10.1038/s41598-020-71177-6

Abstract

Oleogels are lipid-based soft materials composed of large fractions of oil (> 85%) developed as saturated and hydrogenated fat substitutes to reduce cardiovascular diseases caused by obesity. Promising oleogels are unstable during storage, and to improve their stability careful control of the crystalline network is necessary. However, this is unattainable with state-of-the-art technologies. We employ ultrasonic standing wave (USSW) fields to modify oleogel structure. During crystallization, the growing crystals move towards the US-SW nodal planes. Homogeneous, dense bands of microcrystals form independently of oleogelator type, concentration, and cooling rate. The thickness of these bands is proportional to the USSW wavelength. These new structures act as physical barriers in reducing the migration kinetics of a liposoluble colorant compared to statically crystallized oleogels. These results may extend beyond oleogels to potentially be used wherever careful control of the crystallization process and final structure of a system is needed, such as in the cosmetics, pharmaceutical, chemical, and food industries.

References

  1. Co, E. D. & Marangoni, A. G. Organogels: an alternative edible oil-structuring method. J. Am. Oil Chem. Soc. 89, 749–780 (2012). - PubMed
  2. Singh, A., Auzanneau, F. I. & Rogers, M. A. Advances in edible oleogel technologies: a decade in review. Food Res. Int. 97, 307–317 (2017). - PubMed
  3. Marangoni, A. G. et al. Structure and functionality of edible fats. Soft Matter 8, 1275–1300 (2012). - PubMed
  4. Azais-Braesco, V. et al. Healthy food and healthy choices: a new european profile approach. Atheroscler. Suppl. 10, 1–11 (2009). - PubMed
  5. Astrup, A. et al. Who draft guidelines on dietary saturated and trans fatty acids: time for a new approach?. BMJ 366, l4137 (2019). - PubMed
  6. Meldrum, D. R., Morris, M. A. & Gambone, J. C. Obesity pandemic: causes, consequences, and solutions-but do we have the will?. Fertil. Steril. 107, 833–839 (2017). - PubMed
  7. Cuschieri, S. & Mamo, J. Getting to grips with the obesity epidemic in Europe. SAGE Open Med. 4, 2050312116670406 (2016). - PubMed
  8. The University of Reading (UK). Eatwell: final report. https://cordis.europa.eu/project/id/226713/reporting (2014). - PubMed
  9. Cawley, J. & Meyerhoefer, C. The medical care costs of obesity: an instrumental variables approach. J. Health Econ. 31, 219–230 (2012). - PubMed
  10. Patel, A. R. Structuring edible oils with hydrocolloids: Where do we stand?. Food Biophys. 13, 113–115 (2018). - PubMed
  11. Rogers, M. A., Wright, A. J. & Marangoni, A. G. Oil organogels: the fat of the future?. Soft Matter 5, 1594–1596 (2009). - PubMed
  12. Wang, F. C., Gravelle, A. J., Blake, A. I. & Marangoni, A. G. Novel trans fat replacement strategies. Curr. Opin. Food Sci. 7, 27–34 (2016). - PubMed
  13. Chen, C. H. & Terentjev, E. M. Aging and metastability of monoglycerides in hydrophobic solutions. Langmuir 25, 6717–6724 (2009). - PubMed
  14. Valoppi, F., Calligaris, S. & Marangoni, A. G. Phase transition and polymorphic behavior of binary systems containing fatty alcohols and peanut oil. Cryst. Growth Des. 16, 4209–4215 (2016). - PubMed
  15. Valoppi, F., Calligaris, S. & Marangoni, A. G. Structure and physical properties of oleogels containing peanut oil and saturated fatty alcohols. Eur. J. Lipid Sci. Technol. 119, 1600252 (2017). - PubMed
  16. Patel, A. R. & Dewettinck, K. Edible oil structuring: an overview and recent updates. Food Funct. 7, 20–29 (2016). - PubMed
  17. Doan, C. D., Tavernier, I., Okuro, P. K. & Dewettinck, K. Internal and external factors affecting the crystallization, gelation and applicability of wax-based oleogels in food industry. Innov. Food Sci. Emerg. Technol. 45, 42–52 (2018). - PubMed
  18. Marangoni, A. G., van Duynhoven, J. P. M., Acevedo, N. C., Nicholson, R. A. & Patel, A. R. Advances in our understanding of the structure and functionality of edible fats and fat mimetics. Soft Matter 16, 289–306 (2020). - PubMed
  19. Blake, A. I. & Marangoni, A. G. The use of cooling rate to engineer the microstructure and oil binding capacity of wax crystal networks. Food Biophys. 10, 456–465 (2015). - PubMed
  20. Blake, A. I. & Marangoni, A. G. The effect of shear on the microstructure and oil binding capacity of wax crystal networks. Food Biophys. 10, 403–415 (2015). - PubMed
  21. Da Pieve, S., Calligaris, S., Co, E., Nicoli, M. C. & Marangoni, A. G. Shear nanostructuring of monoglyceride organogels. Food Biophys. 5, 211–217 (2010). - PubMed
  22. Jana, S. & Martini, S. Effect of high-intensity ultrasound and cooling rate on the crystallization behavior of beeswax in edible oils. J. Agric. Food Chem. 62, 10192–10202 (2014). - PubMed
  23. Sharifi, M., Goli, S. A. H. & Fayaz, G. Exploitation of high-intensity ultrasound to modify the structure of olive oil organogel containing propolis wax. Int. J. Food Sci. Technol. 54, 509–515 (2019). - PubMed
  24. Sato, K., Bayes-Garcia, L., Calvet, T., Cuevas-Diarte, M. A. & Ueno, S. External factors affecting polymorphic crystallization of lipids. Eur. J. Lipid Sci. Technol. 115, 1224–1238 (2013). - PubMed
  25. Maleky, F. & Marangoni, A. Nanoscale effects on oil migration through triacylglycerol polycrystalline colloidal networks. Soft Matter 7, 6012–6024 (2011). - PubMed
  26. Wagh, A., Birkin, P. & Martini, S. High-intensity ultrasound to improve physical and functional properties of lipids. Annu. Rev. Food Sci. Technol. 7, 23–41 (2016). - PubMed
  27. Yamahira, S., Hatanaka, S., Kuwabara, M. & Asai, S. Orientation of fibers in liquid by ultrasonic standing waves. Jpn. J. Appl. Phys. 39, 3683 (2000). - PubMed
  28. Sundvik, M., Nieminen, H. J., Salmi, A., Panula, P. & Haeggström, E. Effects of acoustic levitation on the development of zebrafish, danio rerio, embryos. Sci. Rep. 5, 13596 (2015). - PubMed
  29. Migara, L. K. & Song, J.-K. Standing wave-mediated molecular reorientation and spontaneous formation of tunable, concentric defect arrays in liquid crystal cells. NPG Asia Mater. 10, e459 (2018). - PubMed
  30. Courtney, C. R. P. et al. Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves. Proc. R. Soc. A 468, 337–360 (2010). - PubMed
  31. Chen, Y., et al. Tunable nanowire patterning using standing surface acoustic waves. ACS Nano 7, 3306–3314 (2013). - PubMed
  32. Coakley, W. T., Bardsley, D. W., Grundy, M. A., Zamani, F. & Clarke, D. J. Cell manipulation in ultrasonic standing wave fields. J. Chem. Technol. Biotechnol. 44, 43–62 (1989). - PubMed
  33. Pușcaș, A., Mureșan, V., Socaciu, C. & Muste, S. Oleogels in food: a review of current and potential applications. Foods 9, 70 (2020). - PubMed
  34. Pangu, G. D. & Feke, D. L. Droplet transport and coalescence kinetics in emulsions subjected to acoustic fields. Ultrasonics 46, 289–302 (2007). - PubMed
  35. Settles, G. S. Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, New York, 2006). - PubMed
  36. Sánchez-Becerril, M. et al. Characterization of the micro and nanostructure of the candelilla wax organogels crystal networks. Food Struct. 16, 1–7 (2018). - PubMed
  37. Acevedo, N. C. & Marangoni, A. G. Characterization of the nanoscale in triacylglycerol crystal networks. Cryst. Growth. Des. 10, 3327–3333 (2010). - PubMed
  38. Giacomozzi, A. S., Palla, C. A., Carrin, M. E. & Martini, S. Physical properties of monoglycerides oleogels modified by concentration, cooling rate, and high-intensity ultrasound. J. Food Sci. 84, 2549–2561 (2019). - PubMed
  39. Davidovich-Pinhas, M., Barbut, S. & Marangoni, A. G. The gelation of oil using ethyl cellulose. Carbohydr. Polym. 117, 869–878 (2015). - PubMed
  40. Cerqueira, M. A. et al. Structural and mechanical properties of organogels: Role of oil and gelator molecular structure. Food Res. Int. 96, 161–170 (2017). - PubMed
  41. Valoppi, F. et al. Influence of oil type on formation, structure, thermal, and physical properties of monoglyceride-based organogel. Eur. J. Lipid Sci. Technol. 119, 1500549 (2017). - PubMed
  42. Calligaris, S., Valoppi, F., Barba, L., Anese, M. & Nicoli, M. C. Β-carotene degradation kinetics as affected by fat crystal network and solid/liquid ratio. Food Res. Int. 105, 599–604 (2018). - PubMed
  43. Blake, A. I., Co, E. D. & Marangoni, A. G. Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. J. Am. Oil Chem. Soc. 91, 885–903 (2014). - PubMed
  44. de Vries, A., Hendriks, J., van der Linden, E. & Scholten, E. Protein oleogels from protein hydrogels via a stepwise solvent exchange route. Langmuir 31, 13850–13859 (2015). - PubMed
  45. Hwang, H.-S., Fhaner, M., Winkler-Moser, J. K. & Liu, S. X. Oxidation of fish oil oleogels formed by natural waxes in comparison with bulk oil. Eur. J. Lipid. Sci. Technol. 120, 1700378 (2018). - PubMed
  46. COMSOL Multiphysics v.5.4. COMSOL AB, Stockholm. www.comsol.com (2018). - PubMed
  47. Lampsijärvi, E., Hanhijärvi, K., Nieminen, H. J., Salmi, A., Kassamakov, I. & Haeggstrom, E. Characterizing shockwave propagation in waveguides by schlieren imaging, In Proceedings of the 2016 IEEE International Ultrasonics Symposium (IUS), 18–21 Sept. 2016; IEEE, pp. 1–4 (2016). - PubMed
  48. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. Nih image to imagej: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). - PubMed
  49. Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Hausermann, D. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Res. 14, 235–248 (1996). - PubMed
  50. Roisnel, T. & Rodríguez-Carvajal, J. Winplotr: a windows tool for powder diffraction patterns analysis. Mater. Sci. Forum 378–381, 118–123 (2000). - PubMed
  51. R Core Team. R: A Language and Environment for Statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org (2018). - PubMed

Publication Types