Display options
Share it on

Nat Mater. 2021 Feb;20(2):202-207. doi: 10.1038/s41563-020-00806-2. Epub 2020 Sep 21.

Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride.

Nature materials

Hui Shan Wang, Lingxiu Chen, Kenan Elibol, Li He, Haomin Wang, Chen Chen, Chengxin Jiang, Chen Li, Tianru Wu, Chun Xiao Cong, Timothy J Pennycook, Giacomo Argentero, Daoli Zhang, Kenji Watanabe, Takashi Taniguchi, Wenya Wei, Qinghong Yuan, Jannik C Meyer, Xiaoming Xie

Affiliations

  1. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, P. R. China.
  2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China.
  3. CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai, P. R. China.
  4. Faculty of Physics, University of Vienna, Vienna, Austria.
  5. School of Chemistry, CRANN - Advanced Microscopy Laboratory, Trinity College Dublin, Dublin, Ireland.
  6. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, P. R. China.
  7. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, P. R. China. [email protected].
  8. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China. [email protected].
  9. CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai, P. R. China. [email protected].
  10. School of Physical Science and Technology, ShanghaiTech University, Shanghai, P. R. China.
  11. Department of Lithospheric Research, University of Vienna, Vienna, Austria.
  12. Electron Microscopy for Materials Research (EMAT), University of Antwerpen, Antwerpen, Belgium.
  13. State Key Laboratory of ASIC & System, School of Information Science and Technology, Fudan University, Shanghai, P. R. China.
  14. National Institute for Materials Science, Tsukuba, Japan.
  15. State Key Laboratory of Precision Spectroscopy, School of Physics and Material Science, East China Normal University, Shanghai, P. R. China.
  16. Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.
  17. Faculty of Physics, University of Vienna, Vienna, Austria. [email protected].
  18. Institute of Applied Physics, University of Tübingen, Tübingen, Germany. [email protected].

PMID: 32958881 DOI: 10.1038/s41563-020-00806-2

Abstract

The integrated in-plane growth of graphene nanoribbons (GNRs) and hexagonal boron nitride (h-BN) could provide a promising route to achieve integrated circuitry of atomic thickness. However, fabrication of edge-specific GNRs in the lattice of h-BN still remains a significant challenge. Here we developed a two-step growth method and successfully achieved sub-5-nm-wide zigzag and armchair GNRs embedded in h-BN. Further transport measurements reveal that the sub-7-nm-wide zigzag GNRs exhibit openings of the bandgap inversely proportional to their width, while narrow armchair GNRs exhibit some fluctuation in the bandgap-width relationship. An obvious conductance peak is observed in the transfer curves of 8- to 10-nm-wide zigzag GNRs, while it is absent in most armchair GNRs. Zigzag GNRs exhibit a small magnetic conductance, while armchair GNRs have much higher magnetic conductance values. This integrated lateral growth of edge-specific GNRs in h-BN provides a promising route to achieve intricate nanoscale circuits.

References

  1. Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006). - PubMed
  2. Llinas, J. P. et al. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8, 633 (2017). - PubMed
  3. Baringhaus, J. et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506, 349–354 (2014). - PubMed
  4. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996). - PubMed
  5. Magda, G. Z. et al. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608–611 (2014). - PubMed
  6. Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016). - PubMed
  7. Yang, L., Park, C.-H., Son, Y.-W., Cohen, M. L. & Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007). - PubMed
  8. Son, Y.-W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006). - PubMed
  9. Jia, X. et al. Graphene edges: a review of their fabrication and characterization. Nanoscale 3, 86–95 (2011). - PubMed
  10. Wassmann, T. et al. Structure, stability, edge states, and aromaticity of graphene ribbons. Phys. Rev. Lett. 101, 096402 (2008). - PubMed
  11. Seitsonen, A. P. et al. Structure and stability of graphene nanoribbons in oxygen, carbon dioxide, water, and ammonia. Phys. Rev. B 82, 115425 (2010). - PubMed
  12. Jia, X. et al. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 1701–1705 (2009). - PubMed
  13. Girit, Ç. Ö. et al. Graphene at the edge: stability and dynamics. Science 323, 1705–1708 (2009). - PubMed
  14. Kim, K. et al. Atomically perfect torn graphene edges and their reversible reconstruction. Nat. Commun. 4, 2723 (2013). - PubMed
  15. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013). - PubMed
  16. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016). - PubMed
  17. Ci, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010). - PubMed
  18. Liu, L. et al. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343, 163–167 (2014). - PubMed
  19. Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012). - PubMed
  20. Liu, Z. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 8, 119–124 (2013). - PubMed
  21. Gong, Y. J. et al. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nat. Commun. 5, 3193 (2014). - PubMed
  22. Li, K. & Zhang, X.-H. Asymmetrical edges induced strong current-polarization in embedded graphene nanoribbons. Phys. Lett. A 382, 1167–1170 (2018). - PubMed
  23. Ding, Y., Wang, Y. & Ni, J. Electronic properties of graphene nanoribbons embedded in boron nitride sheets. Appl. Phys. Lett. 95, 123105 (2009). - PubMed
  24. Lu, X. et al. Graphene nanoribbons epitaxy on boron nitride. Appl. Phys. Lett. 108, 113103 (2016). - PubMed
  25. Chen, L. et al. Edge control of graphene domains grown on hexagonal boron nitride. Nanoscale 9, 11475–11479 (2017). - PubMed
  26. Tang, S. et al. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat. Commun. 6, 6499 (2015). - PubMed
  27. Mashoff, T. et al. Bistability and oscillatory motion of natural nanomembranes appearing within monolayer graphene on silicon dioxide. Nano Lett. 10, 461–465 (2010). - PubMed
  28. Susi, T. et al. Isotope analysis in the transmission electron microscope. Nat. Commun. 7, 13040 (2016). - PubMed
  29. Hawkes, P. W. Advances in Imaging and Electron Physics Vol. 138 (Elsevier, 2005). - PubMed
  30. Chen, L. et al. Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches. Nat. Commun. 8, 14703 (2017). - PubMed
  31. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003). - PubMed
  32. Mann, D., Javey, A., Kong, J., Wang, Q. & Dai, H. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 3, 1541–1544 (2003). - PubMed
  33. Pereira, V. M., Neto, A. H. C. & Peres, N. M. R. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009). - PubMed
  34. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013). - PubMed
  35. Wu, S. et al. Magnetotransport properties of graphene nanoribbons with zigzag edges. Phys. Rev. Lett. 120, 216601 (2018). - PubMed
  36. Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018). - PubMed
  37. Heimes, A., Kotetes, P. & Schön, G. Majorana fermions from Shiba states in an antiferromagnetic chain on top of a superconductor. Phys. Rev. B 90, 060507 (2014). - PubMed

Publication Types

Grant support