Display options
Share it on

Sci Rep. 2020 Sep 08;10(1):14747. doi: 10.1038/s41598-020-71410-2.

Characteristics of hydrate-bound gas retrieved at the Kedr mud volcano (southern Lake Baikal).

Scientific reports

Akihiro Hachikubo, Hirotsugu Minami, Satoshi Yamashita, Andrey Khabuev, Alexey Krylov, Gennadiy Kalmychkov, Jeffrey Poort, Marc De Batist, Alexandr Chenskiy, Andrey Manakov, Oleg Khlystov

Affiliations

  1. Kitami Institute of Technology, 165 Koen-cho, Kitami, 090-8507, Japan. [email protected].
  2. Kitami Institute of Technology, 165 Koen-cho, Kitami, 090-8507, Japan.
  3. Limnological Institute, SB RAS, 3 Ulan-Batorskaya St, Irkutsk, Russia, 664033.
  4. Institute of Earth Sciences, St. Petersburg State University, 7-9, Universitetskaya Nab., St. Petersburg, Russia, 199034.
  5. VNIIOkeangeologia, Anglyisky prospect 1, St. Petersburg, Russia, 190121.
  6. Vinogradov Institute of Geochemistry, SB RAS, 1-a Favorsky St, Irkutsk, Russia, 664033.
  7. Sorbonne Université, CNRS, Institut des Sciences de la Terre de Paris, ISTeP, 4 place Jussieu, 75005, Paris, France.
  8. Renard Centre of Marine Geology, Ghent University, Krijgslaan 281 s8, 9000, Ghent, Belgium.
  9. Irkutsk National Research Technical University, 83 Lemontov St, Irkutsk, Russia, 664074.
  10. Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave, Novosibirsk, Russia, 630090.

PMID: 32901048 PMCID: PMC7479611 DOI: 10.1038/s41598-020-71410-2

Abstract

We reported the characteristics of hydrate-bound hydrocarbons in lake-bottom sediments at the Kedr mud volcano in Lake Baikal. Twenty hydrate-bearing sediment cores were retrieved, and methane-stable isotopes of hydrate-bound gases (δ

References

  1. Sloan, E. D. & Koh, C. A. Clathrate hydrates of natural gases (CRC Press, Boca Raton, FL, 2008). - PubMed
  2. Makogon, Y. F., Holditch, S. A. & Makogon, T. Y. Natural gas-hydrates—a potential energy source for the 21st Century. J. Pet. Sci. Eng. 56, 14–31. https://doi.org/10.1016/j.petrol.2005.10.009 (2007). - PubMed
  3. Boswell, R. & Collett, T. S. Current perspectives on gas hydrate resources. Energy Environ. Sci. 4, 1206–1215. https://doi.org/10.1039/C0EE00203H (2011). - PubMed
  4. Kennedy, M., Mrofka, D. & von der Borch, C. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature 453, 642–645. https://doi.org/10.1038/nature06961 (2008). - PubMed
  5. Milkov, A. V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?. Earth Sci. Rev. 66, 183–197. https://doi.org/10.1016/j.earscirev.2003.11.002 (2004). - PubMed
  6. Milkov, A. V. & Sassen, R. Two-dimensional modeling of gas hydrate decomposition in the northwestern Gulf of Mexico: significance to global change assessment. Glob. Planet Change 36, 31–46. https://doi.org/10.1016/S0921-8181(02)00162-5 (2003). - PubMed
  7. Milkov, A. V. et al. Ethane enrichment and propane depletion in subsurface gases indicate gas hydrate occurrence in marine sediments at southern Hydrate Ridge offshore Oregon. Org. Geochem. 35, 1067–1080. https://doi.org/10.1016/j.orggeochem.2004.04.003 (2004). - PubMed
  8. Sassen, R., Sweet, S. T., DeFreitas, D. A. & Milkov, A. V. Exclusion of 2-methylbutane (isopentane) during crystallization of structure II gas hydrate in sea-floor sediment Gulf of Mexico. Org. Geochem. 31, 1257–1262. https://doi.org/10.1016/S0146-6380(00)00144-3 (2000). - PubMed
  9. Khlystov, O. et al. Gas hydrate of lake baikal: discovery and varieties. J. Asian Earth Sci. 62, 162–166. https://doi.org/10.1016/j.jseaes.2012.03.009 (2013). - PubMed
  10. Khlystov, O. M., Khabuev, A. V., Minami, H., Hachikubo, A. & Krylov, A. A. Gas hydrates in Lake Baikal. Limnol. Freshwater Biol. 1, 66–70 https://doi.org/10.31951/2658-3518-2018-A-1-66 (2018). - PubMed
  11. Subramanian, S., Kini, R. A., Dec, S. F. & Sloan, E. D. Jr. Evidence of structure II hydrate formation from methane + ethane mixtures. Chem. Eng. Sci. 55, 1981–1999. https://doi.org/10.1016/S0009-2509(99)00389-9 (2000). - PubMed
  12. Subramanian, S., Ballard, A. L., Kini, R. A., Dec, S. F. & Sloan, E. D. Jr. Structural transitions in methane + ethane gas hydrates — part I: upper transition point and applications. Chem. Eng. Sci. 55, 5763–5771. https://doi.org/10.1016/S0009-2509(00)00162-7 (2000). - PubMed
  13. Kida, M. et al. Coexistence of structure I and II gas hydrates in Lake Baikal suggesting gas sources from microbial and thermogenic origin. Geophys. Res. Lett. 33, L24603. https://doi.org/10.1029/2006GL028296 (2006). - PubMed
  14. Kida, M. et al. Natural gas hydrates with locally different cage occupancies and hydration numbers in Lake Baikal. Geochem. Geophys. Geosyst. 10, Q05003. https://doi.org/10.1029/2009GC002473 (2009). - PubMed
  15. Hachikubo, A. et al. Model of formation of double structure gas hydrates in Lake Baikal based on isotopic data. Geophys. Res. Lett. 36, L18504. https://doi.org/10.1029/2009GL039805 (2009). - PubMed
  16. Poort, J. et al. Thermal anomalies associated with shallow gas hydrates in the K-2 mud volcano Lake Baikal. Geo-Mar. Lett. 32, 407–417. https://doi.org/10.1007/s00367-012-0292-0 (2012). - PubMed
  17. Manakov, A. Yu., Khlystov, O. M., Hachikubo, A. & Ogienko, A. G. A physicochemical model for the formation of gas hydrates of different structural types in K-2 mud volcano (Kukui Canyon, Lake Baikal). Rus. Geol. Geophys. 54, 475–482. https://doi.org/10.1016/j.rgg.2013.03.009 (2013). - PubMed
  18. Hachikubo, A. et al. Dissociation heat of mixed-gas hydrate composed of methane and ethane. In Proc. 6th Int. Conf. on Gas Hydrates, 6–10 July, 2008, Vancouver, Canada (2008). https://hdl.handle.net/2429/2694 - PubMed
  19. Kalmychkov, G. V., Pokrovsky, B. G., Hachikubo, A. & Khlystov, O. M. Geochemical characteristics of methane from sediments of the underwater high Posolskaya Bank (Lake Baikal). Lithol. Min. Resour. 52, 102–110. https://doi.org/10.1134/S0024490217020055 (2017). - PubMed
  20. Minami, H. et al. Hydrogen and oxygen isotopic anomalies in pore waters suggesting clay mineral dehydration at gas hydrate-bearing Kedr mud volcano, southern Lake Baikal Russia. Geo-Mar. Lett. 38, 403–415. https://doi.org/10.1007/s00367-018-0542-x (2018). - PubMed
  21. Rasskazov, S. V. et al. Sediments in the Tertiary Tankhoi field, south Baikal basin: stratigraphy, correlation and structural transformations in the Baikal region (in Russian). Geodyn. Tectonophys. 5, 993–1032. https://doi.org/10.5800/GT-2014-5-4-0165 (2014). - PubMed
  22. Khlystov, O. M. et al. New evidence on the relief of the southern underwater slope in the south Baikal basin. Geogr. Nat. Resour. 39, 33–38. https://doi.org/10.1134/S1875372818010055 (2018). - PubMed
  23. Hachikubo, A. et al. Molecular and isotopic characteristics of gas hydrate-bound hydrocarbons in southern and central Lake Baikal. Geo-Mar. Lett. 30, 321–329. https://doi.org/10.1007/s00367-010-0203-1 (2010). - PubMed
  24. Bernard, B. B., Brooks, J. M. & Sackett, W. M. Natural gas seepage in the Gulf of Mexico. Earth Planet. Sci. Lett. 31, 48–54. https://doi.org/10.1016/0012-821X(76)90095-9 (1976). - PubMed
  25. Milkov, A. V. & Etiope, G. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002 (2018). - PubMed
  26. Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314. https://doi.org/10.1016/S0009-2541(99)00092-3 (1999). - PubMed
  27. Taylor, S. W., SherwoodLollar, B. & Wassenaar, L. I. Bacteriogenic ethanein near-surface aquifers: Implications for leaking hydrocarbon well bores. Environ. Sci. Technol. 34, 4727–4732. https://doi.org/10.1021/es001066x (2000). - PubMed
  28. Milkov, A. V. Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings. Org. Geochem. 36, 681–702. https://doi.org/10.1016/j.orggeochem.2005.01.010 (2005). - PubMed
  29. Milkov, A. V. Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs. Org. Geochem. 42, 184–207. https://doi.org/10.1016/j.orggeochem.2010.12.003 (2011). - PubMed
  30. Scott, A. R., Kaiser, W. R. & Ayers, W. B. Jr. Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico – implications for coalbed gas producibility. Am. Assoc. Pet. Geol. Bull. 78, 1186–1209. https://doi.org/10.1306/A25FEAA9-171B-11D7-8645000102C1865D (1994). - PubMed
  31. Lorenson, T. D., Collett, T. S. & Hunter, R. B. Gas geochemistry of the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Implications for gas hydrate exploration in the Arctic. Mar. Petrol. Geol. 28, 343–360. https://doi.org/10.1016/j.marpetgeo.2010.02.007 (2011). - PubMed
  32. James, A. T. & Burns, B. J. Microbial alteration of subsurface natural gas accumulations. AAPG Bull. 68, 957–960 (1984). - PubMed
  33. Katz, B. J. Microbial processes and natural gas accumulations. Open Geol. J. 5, 75–83. https://doi.org/10.2174/1874262901105010075 (2011). - PubMed
  34. Sloan, E. D. Jr. Clathrate hydrates of natural gases (Marcel Dekker, NY, 1998). - PubMed
  35. Kida, M., Jin, Y., Takahashi, N., Nagao, J. & Narita, H. Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II. J. Phys. Chem. A 114, 9456–9461. https://doi.org/10.1021/jp1055667 (2010). - PubMed
  36. Hachikubo, A. et al. Isotopic fractionation of methane and ethane hydrates between gas and hydrate phases. Geophys. Res. Lett. 34, L21502. https://doi.org/10.1029/2007GL030557 (2007). - PubMed
  37. Matsuda, J., Hachikubo, A., Ozeki, T. & Takeya, S. Effect of crystallographic structure on hydrogen isotope fractionation of ethane in the system of methane and ethane mixed-gas hydrate (in Japanese). Annu. Rep. on Snow and Ice Studies in Hokkaido 37, 27–30 (2018). - PubMed
  38. Uchida, T. et al. Physical properties of natural gas hydrate and associated gas-hydrate-bearing sediments in the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well in Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada (eds. Dallimore, S. R. & Collett, T. S.) (Geological Survey of Canada, Bulletin 585, 2005). - PubMed
  39. Hunt, J. M. & Whelan, J. K. Dissolved gases in Black Sea sediments. DSDP Initial Rep. 42, 661–665. https://doi.org/10.2973/dsdp.proc.42-2.125.1978 (1978). - PubMed
  40. Schaefer, R. G. & Leythaeuser, D. C - PubMed
  41. Hachikubo, A., Yanagawa, K., Tomaru, H., Lu, H. & Matsumoto, R. Molecular and isotopic composition of volatiles in gas hydrates and in pore water from Joetsu Basin, eastern margin of Japan Sea. Energies 8, 4647–4666. https://doi.org/10.3390/en8064647 (2015). - PubMed
  42. Manakov, A. Y., Kosyakov, V. I. & Solodovnikov, S. F. Structural chemistry of clathrate hydrates and related compounds in Comprehensive Supramolecular Chemistry II (ed. Atwood, J. L.) 161–206 (Oxford, Elsevier, 2017). - PubMed
  43. Sakagami, H. et al. Molecular and isotopic composition of hydrate-bound and sediment gases in the southern basin of Lake Baikal, based on an improved headspace gas method. Geo-Mar. Lett. 32, 465–472. https://doi.org/10.1007/s00367-012-0294-y (2012). - PubMed

Publication Types