Display options
Share it on

Exp Ther Med. 2020 Oct;20(4):3493-3497. doi: 10.3892/etm.2020.8981. Epub 2020 Jul 09.

New insights into IL-17/IL-23 signaling in ankylosing spondylitis (Review).

Experimental and therapeutic medicine

Beatrice Andreea Chisălău, Laura-Ioana Crînguș, Florentin Ananu Vreju, Cristina Dorina Pârvănescu, Sineta Cristina Firulescu, Ștefan Cristian Dinescu, Dana Alexandra Ciobanu, Andrei Adrian Tica, Raluca Elena Sandu, Isabela Siloși, Mihail Virgil Boldeanu, Ioan Sabin Poenariu, Anca Marilena Ungureanu, Lidia Boldeanu, Andreea Lili Bărbulescu

Affiliations

  1. Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
  2. Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
  3. Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
  4. Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
  5. Medico Science SRL Stem Cell Bank Unit, 200690 Craiova, Romania.
  6. Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.

PMID: 32905121 PMCID: PMC7464928 DOI: 10.3892/etm.2020.8981

Abstract

Ankylosing spondylitis (AS) is a progressive common autoimmune inflammatory disease, part of the spondylarthritis group, characterized, besides clinical spinal and peripheral joint inflammation, by enthesitis and new bone formation, that can lead to severe functional impairment. Beyond intensive and continuous research on the pathogenic process extensively performed in recent years, their impact on therapeutic management remains open to future development. Better knowledge of AS pathogenesis have shown results progressively and studies are being performed to advance our current understanding of the disease. It is well known that tumor necrosis factor (TNF) exerts a central role, along with interleukin-17 (IL-17) and interleukin-23 (IL-23), demonstrated by several clinical studies. Similar to other rheumatic inflammatory conditions, SA is associated with an early process of systemic bone loss, both trabecular and cortical, consecutive osteopenia, osteoporosis, and high fracture risk. Current personalized therapeutic options benefit from new published data, to prevent future complications and to improve quality of life.

Copyright: © Chisălău et al.

Keywords: IL-17/IL-23 pathway; ankylosing spondylitis; bone loss; interleukin-17; interleukin-23

References

  1. Med Ultrason. 2017 Apr 22;19(2):166-171 - PubMed
  2. J Bone Miner Res. 2019 Feb;34(2):349-360 - PubMed
  3. Arthritis Rheum. 2012 May;64(5):1420-9 - PubMed
  4. Z Rheumatol. 2020 Feb;79(1):5-12 - PubMed
  5. Nat Rev Rheumatol. 2018 Nov;14(11):631-640 - PubMed
  6. Expert Rev Clin Immunol. 2019 Feb;15(2):123-134 - PubMed
  7. Ann Rheum Dis. 2013 Jun;72(6):974-8 - PubMed
  8. Lancet. 2018 Dec 8;392(10163):2441-2451 - PubMed
  9. Arthritis Res Ther. 2007;9(5):R96 - PubMed
  10. Nat Rev Rheumatol. 2017 Jun;13(6):359-367 - PubMed
  11. Joint Bone Spine. 2007 May;74(3):304-5 - PubMed
  12. Cell Death Differ. 2009 Oct;16(10):1332-43 - PubMed
  13. Eur J Immunol. 2008 Oct;38(10):2845-54 - PubMed
  14. Ann Rheum Dis. 2019 Jan;78(1):66-73 - PubMed
  15. Nat Immunol. 2012 Oct;13(10):991-9 - PubMed
  16. Nature. 2006 May 11;441(7090):235-8 - PubMed
  17. Semin Arthritis Rheum. 2019 Feb;48(4):632-637 - PubMed
  18. Mediators Inflamm. 2017;2017:5950395 - PubMed
  19. J Immunol Res. 2016;2016:3109135 - PubMed
  20. Curr Rheumatol Rep. 2019 Nov 11;21(10):58 - PubMed
  21. Ann Rheum Dis. 2020 Jan;79(1):123-131 - PubMed
  22. Arch Oral Biol. 2014 Sep;59(9):897-905 - PubMed
  23. Arthritis Rheumatol. 2014 Jul;66(7):1755-67 - PubMed
  24. Rom J Morphol Embryol. 2019;60(3):781-786 - PubMed
  25. Nat Genet. 2011 Jul 10;43(8):761-7 - PubMed
  26. Biomark Med. 2015;9(6):513-28 - PubMed
  27. Nat Commun. 2016 Mar 11;7:10928 - PubMed
  28. Nat Genet. 2007 Nov;39(11):1329-37 - PubMed
  29. Int J Biochem Cell Biol. 2009 Apr;41(4):733-5 - PubMed
  30. J Immunol. 2008 Jul 15;181(2):1507-18 - PubMed
  31. Lancet. 2013 Aug 31;382(9894):780-9 - PubMed
  32. Autoimmun Rev. 2020 Jan;19(1):102429 - PubMed
  33. Bone. 2016 Mar;84:262-270 - PubMed
  34. Clin Exp Immunol. 2016 Jan;183(1):30-6 - PubMed
  35. Ann Rheum Dis. 2020 Jan;79(1):132-140 - PubMed
  36. Int J Mol Sci. 2017 Jun 19;18(6): - PubMed
  37. Nat Commun. 2019 Jan 2;10(1):9 - PubMed
  38. Immunol Lett. 2010 Jan 4;127(2):100-7 - PubMed
  39. Front Immunol. 2014 Sep 02;5:425 - PubMed
  40. Rheumatology (Oxford). 2015 Apr;54(4):728-35 - PubMed
  41. PLoS One. 2012;7(6):e40044 - PubMed
  42. Immunotargets Ther. 2015 Oct 01;4:185-90 - PubMed
  43. J Bone Miner Metab. 2007;25(5):277-85 - PubMed
  44. Arthritis Rheumatol. 2019 Feb;71(2):258-270 - PubMed
  45. Front Med (Lausanne). 2017 Jan 18;4:1 - PubMed
  46. Ann Rheum Dis. 2018 Sep;77(9):1295-1302 - PubMed
  47. Rom J Morphol Embryol. 2018;59(1):77-91 - PubMed
  48. Arthritis Res Ther. 2016 May 10;18(1):104 - PubMed
  49. Clin Rheumatol. 2011 Feb;30(2):269-73 - PubMed
  50. J Immunol Res. 2015;2015:218060 - PubMed
  51. Cent Eur J Immunol. 2019;44(4):433-439 - PubMed
  52. Ann Rheum Dis. 2017 Jan;76(1):261-269 - PubMed

Publication Types