Display options
Share it on

Trends Biotechnol. 2021 May;39(5):445-459. doi: 10.1016/j.tibtech.2020.08.002. Epub 2020 Sep 07.

Can Bottom-Up Synthetic Biology Generate Advanced Drug-Delivery Systems?.

Trends in biotechnology

Felix Lussier, Oskar Staufer, Ilia Platzman, Joachim P Spatz

Affiliations

  1. Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany; Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany. Electronic address: [email protected].
  2. Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany; Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK; Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany.
  3. Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany; Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK. Electronic address: [email protected].
  4. Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany; Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK; Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany. Electronic address: [email protected].

PMID: 32912650 DOI: 10.1016/j.tibtech.2020.08.002

Abstract

Creating a magic bullet that can selectively kill cancer cells while sparing nearby healthy cells remains one of the most ambitious objectives in pharmacology. Nanomedicine, which relies on the use of nanotechnologies to fight disease, was envisaged to fulfill this coveted goal. Despite substantial progress, the structural complexity of therapeutic vehicles impedes their broad clinical application. Novel modular manufacturing approaches for engineering programmable drug carriers may be able to overcome some fundamental limitations of nanomedicine. We discuss how bottom-up synthetic biology principles, empowered by microfluidics, can palliate current drug carrier assembly limitations, and we demonstrate how such a magic bullet could be engineered from the bottom up to ultimately improve clinical outcomes for patients.

Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.

Keywords: bottom-up synthetic biology; droplet-based microfluidics; drug delivery

MeSH terms

Publication Types