Display options
Share it on

ChemSusChem. 2020 Dec 07;13(23):6056-6065. doi: 10.1002/cssc.202002246. Epub 2020 Oct 19.

Unlocking the Potential of Substrate-Directed CO.

ChemSusChem

Bart Limburg, Àlex Cristòfol, Francesco Della Monica, Arjan W Kleij

Affiliations

  1. Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.
  2. Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain.

PMID: 33022846 DOI: 10.1002/cssc.202002246

Abstract

The unparalleled potential of substrate-induced reactivity modes in the catalytic conversion of carbon dioxide and alcohol or amine functionalized epoxides is discussed in relation to more conventional epoxide/CO

© 2020 Wiley-VCH GmbH.

Keywords: carbon dioxide; cycloaddition; homogeneous catalysis; organic carbonates; substrate assistance

References

  1. For selected recent reviews on catalytic CO2 conversion: - PubMed
  2. S. Wang, C. Xi, Chem. Soc. Rev. 2019, 48, 382-404; - PubMed
  3. Y.-Y. Gui, W.-J. Zhou, J.-H. Ye, D.-G. Yu, ChemSusChem 2017, 10, 1337-1340; - PubMed
  4. A. Tortajada, F. Juliá-Hernández, M. Börjesson, T. Moragas, R. Martin, Angew. Chem. Int. Ed. 2018, 57, 15948-15982; - PubMed
  5. Angew. Chem. 2018, 130, 16178-16214; - PubMed
  6. C. S. Yeung, Angew. Chem. Int. Ed. 2019, 58, 5492-5502; - PubMed
  7. Angew. Chem. 2019, 131, 5546-5556; - PubMed
  8. J. Klankermayer, S. Wesselbaum, K. Beydoun, W. Leitner, Angew. Chem. Int. Ed. 2016, 55, 7296-7343; - PubMed
  9. Angew. Chem. 2016, 128, 7416-7467; - PubMed
  10. H. Seo, L. V. Nguyen, T. F. Jamison, Adv. Synth. Catal. 2019, 361, 247-264; - PubMed
  11. B. Yu, L.-N. He, ChemSusChem 2015, 8, 52-62. - PubMed
  12.   - PubMed
  13. T. Sakakura, K. Kohno, Chem. Commun. 2009, 1312-1330; - PubMed
  14. A.-A. G. Shaikh, S. Sivaram, Chem. Rev. 1996, 96, 951-976; - PubMed
  15. T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365-2387. - PubMed
  16.   - PubMed
  17. S. A. Hauser, M. Cokoja, F. E. Kühn, Catal. Sci. Technol. 2013, 3, 552-561; - PubMed
  18. N. Mizuno, K. Yamaguchi, K. Kamata, Coord. Chem. Rev. 2005, 249, 1944-1956; - PubMed
  19. C. Wang, H. Yamamoto, Chem. Asian J. 2015, 10, 2056-2068; - PubMed
  20. Y. Zhu, Q. Wang, R. G. Cornwall, Y. Shi, Chem. Rev. 2014, 114, 8199-8256; - PubMed
  21. B. S. Lane, K. Burgess, Chem. Rev. 2003, 103, 2457-2474. - PubMed
  22. For recent reviews: - PubMed
  23. F. Della Monica, A. Buonerba, C. Capacchione, Adv. Synth. Catal. 2019, 361, 265-282; - PubMed
  24. R. R. Shaikh, S. Pornpraprom, V. D′Elia, ACS Catal. 2018, 8, 419-450; - PubMed
  25. M. Alves, B. Grignard, R. Mereau, C. Jerome, T. Tassaing, C. Detrembleur, Catal. Sci. Technol. 2017, 7, 2651-2684; - PubMed
  26. J. W. Comerford, I. D. V. Ingram, M. North, X. Wu, Green Chem. 2015, 17, 1966-1987; - PubMed
  27. B. Yu, B. Zou, C.-W. Hu, J. CO2 Util. 2018, 26, 314-322; - PubMed
  28. A. J. Kamphuis, F. Picchioni, P. P. Pescarmona, Green Chem. 2019, 21, 406-448. - PubMed
  29. Notable examples of low pressure/temperature catalytic processes: - PubMed
  30. W. Clegg, R. W. Harrington, M. North, R. Pasquale, Chem. Eur. J. 2010, 16, 6828-6843; - PubMed
  31. A. Decortes, A. W. Kleij, ChemCatChem 2011, 3, 831-834; - PubMed
  32. Y. Chen, P. Xu, M. Arai, J. Sun, Adv. Synth. Catal. 2019, 361, 335-344; - PubMed
  33. J. Hu, J. Ma, Q. Zhu, Q. Qian, H. Han, Q. Mei, B. Han, Green Chem. 2016, 18, 382-385; - PubMed
  34. C. Martin, G. Fiorani, A. W. Kleij, ACS Catal. 2015, 5, 1353-1370; - PubMed
  35. H. Buttner, L. Longwitz, J. Steinbauer, C. Wulf, T. Werner, Top. Curr. Chem. 2017, 375, 50-106; - PubMed
  36. F. Della Monica, B. Maity, T. Pehl, A. Buonerba, A. De Nisi, M. Monari, A. Grassi, B. Rieger, L. Cavallo, C. Capacchione, ACS Catal. 2018, 8, 6882-6893. - PubMed
  37. Selected examples of terpene based CCs: - PubMed
  38. G. Fiorani, M. Stuck, C. Martín, M. Martínez-Belmonte, E. Martin, E. C. Escudero-Adán, A. W. Kleij, ChemSusChem 2016, 9, 1304-1311; - PubMed
  39. B. Schäffner, M. Blug, D. Kruse, M. Polyakov, A. Köckritz, A. Martin, P. Rajagopalan, U. Bentrup, A. Brückner, S. Jung, D. Agar, B. Rüngeler, A. Pfennig, K. Müller, W. Arlt, B. Woldt, M. Graß, S. Buchholz, ChemSusChem 2014, 7, 1133-1139; - PubMed
  40. J. Martínez, J. Fernández-Baeza, L. F. Sánchez-Barba, J. A. Castro-Osma, A. Lara-Sánchez, A. Otero, ChemSusChem 2017, 10, 2886-2890; - PubMed
  41. F. de la Cruz-Martínez, M. Martínez de Sarasa Buchaca, J. Martínez, J. Fernández-Baeza, L. F. Sánchez-Barba, A. Rodríguez-Diéguez, J. A. Castro-Osma, A. Lara-Sánchez, ACS Sustainable Chem. Eng. 2019, 7, 20126-20138; - PubMed
  42. L. Longwitz, J. Steinbauer, A. Spannenberg, T. Werner, ACS Catal. 2018, 8, 665-672. - PubMed
  43. Selected examples of fatty acid-based CCs: - PubMed
  44. M. Alves, B. Grignard, S. Gennen, C. Detrembleur, C. Jerome, T. Tassaing, RSC Adv. 2015, 5, 53629-53636; - PubMed
  45. J. Langanke, L. Greiner, W. Leitner, Green Chem. 2013, 15, 1173-1182; - PubMed
  46. H. Büttner, J. Steinbauer, C. Wulf, M. Dindaroglu, H.-G. Schmalz, T. Werner, ChemSusChem 2017, 10, 1076-1079; - PubMed
  47. N. Tenhumberg, H. Büttner, B. Schäffner, D. Kruse, M. Blumenstein, T. Werner, Green Chem. 2016, 18, 3775-3788; - PubMed
  48. L. Peña-Carrodeguas, À. Cristòfol, J. M. Fraile, J. A. Mayoral, V. Dorado-Horrillo, C. I. Herrerías, A. W. Kleij, Green Chem. 2017, 19, 3535-3541. - PubMed
  49. Selected examples of sugar-based CCs: - PubMed
  50. D. Patia, X.-S. Feng, N. Hadjichristidis, Y. Gnanou, J. CO2 Util. 2018, 24, 564-571; - PubMed
  51. G. L. Gregory, G. Kociok-Köhn, A. Buchard, Polym. Chem. 2017, 8, 2093-2104; - PubMed
  52. G. L. Gregory, E. M. López-Vidal, A. Buchard, Chem. Commun. 2017, 53, 2198-2217; - PubMed
  53. P.-K. Dannecker, M. A. R. Meier, Sci. Rep. 2019, 9, 9858. - PubMed
  54. For some leading references: - PubMed
  55. D. J. Darensbourg, R. M. Mackiewicz, J. L. Rodgers J. Am. Chem. Soc. 2005, 127, 14026-14038; - PubMed
  56. D. J. Darensbourg, W.-C. Chung, S. J. Wilson, ACS Catal. 2013, 3, 3050-3057; - PubMed
  57. M. R. Kember, P. D. Knight, P. T. R. Reung, C. K. Williams, Angew. Chem. Int. Ed. 2009, 48, 931-933; - PubMed
  58. Angew. Chem. 2009, 121, 949-951. - PubMed
  59. Limited success has been met in the coupling of tri-substituted epoxides, see for instance: - PubMed
  60. V. Laserna, E. Martin, E. C. Escudero-Adán, A. W. Kleij, ACS Catal. 2017, 7, 5478-5482; - PubMed
  61. C. Maeda, J. Shimonishi, R. Miyazaki, J.-Y. Hasegawa, T. Ema, Chem. Eur. J. 2016, 22, 6556-6563; - PubMed
  62. M. Bähr, A. Bitto, R. Mülhaupt, Green Chem. 2012, 14, 1447-1454. - PubMed
  63. For instructive contributions on the most common steps in CC formation from epoxides and CO2 see: - PubMed
  64. M. North, R. Pasquale, Angew. Chem. Int. Ed. 2009, 48, 2946-2948; - PubMed
  65. Angew. Chem. 2009, 121, 2990-2992; - PubMed
  66. F. Castro-Gómez, G. Salassa, A. W. Kleij, C. Bo, Chem. Eur. J. 2013, 19, 6289-6298; For a recent review on multiple mechanistic pathways in CC formation: - PubMed
  67. F. Della Monica, A. W. Kleij, Catal. Sci. Technol. 2020, 10, 3483-3501. - PubMed
  68. For some original examples: - PubMed
  69. H. L. Parker, J. Sherwood, A. J. Hunt, J. H. Clark, ACS Sustainable Chem. Eng. 2014, 2, 1739-1742; - PubMed
  70. C. Beattie, M. North, P. Villuendas, Molecules 2011, 16, 3420-3432; - PubMed
  71. M. North, P. Villuendas, Org. Lett. 2010, 12, 2378-2381; - PubMed
  72. B. Schäffner, F. Schäffner, S. P Verevkin, A. Börner, Chem. Rev. 2010, 110, 4554-4581. - PubMed
  73.   - PubMed
  74. D. J. Darensbourg, A. I. Moncada, S.-H. Wei, Macromolecules 2011, 44, 2568-2576; - PubMed
  75. P. Brignou, J.-F. Carpentier, S. M. Guillaume, Macromolecules 2011, 44, 5127-5135; - PubMed
  76. W. Guerin, M. Helou, M. Slawinski, J.-M. Brusson, S. M. Guillaume, J.-F. Carpentier, Polym. Chem. 2013, 4, 3686-3693. See also: - PubMed
  77. B. Grignard, S. Gennen, C. Jérôme, A. W. Kleij, C. Detrembleur, Chem. Soc. Rev. 2019, 48, 4466-4514. For examples of the use of five-membered CCs in polymerization processes see: - PubMed
  78. L. Maisonneuve, O. Lamarzelle, E. Rix, E. Grau, H. Cramail, Chem. Rev. 2015, 115, 12407-12439; - PubMed
  79. S. Gennen, B. Grignard, T. Tassaing, C. Jérôme, C. Detrembleur, Angew. Chem. Int. Ed. 2017, 56, 10394-10398; - PubMed
  80. Angew. Chem. 2017, 129, 10530-10534. - PubMed
  81. Carbonates and derivatives as electrolyte solvents: - PubMed
  82. B. Scrosati, J. Hassoun, Y. K. Sun, Energy Environ. Sci. 2011, 4, 3287-3295; - PubMed
  83. B. Carry, L. Zhang, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2016, 55, 6257-6260; - PubMed
  84. Angew. Chem. 2016, 128, 6365-6368. - PubMed
  85.   - PubMed
  86. W. Guo, J. E. Gómez, À. Cristòfol, J. Xie, A. W. Kleij, Angew. Chem. Int. Ed. 2018, 57, 13735-13747; - PubMed
  87. Angew. Chem. 2018, 130, 13928-13941; - PubMed
  88. J. Vaitla, Y. Guttormsen, J. K. Mannisto, A. Nova, T. Repo, A. Bayer, K. H. Hopmann, ACS Catal. 2017, 7, 7231-7244; - PubMed
  89. B. D. W. Allen, C. P. Lakeland, J. P. A. Harrity, Chem. Eur. J. 2017, 23, 13830-13857; - PubMed
  90. À. Cristòfol, C. Böhmer, A. W. Kleij, Chem. Eur. J. 2019, 25, 15055-15058. - PubMed
  91. J. Rintjema, A. W. Kleij, Synthesis 2016, 48, 3863-3878. - PubMed
  92. C. J. Whiteoak, N. Kielland, V. Laserna, E. C. Escudero-Adán, E. Martin, A. W. Kleij, J. Am. Chem. Soc. 2013, 135, 1228-1231. - PubMed
  93. J. Rintjema, W. Guo, E. Martin, E. C. Escudero-Adán, A. W. Kleij, Chem. Eur. J. 2015, 21, 10754-10762. - PubMed
  94. J. Rintjema, R. Epping, G. Fiorani, E. Martín, E. C. Escudero-Adán, A. W. Kleij, Angew. Chem. Int. Ed. 2016, 55, 3972-3976; - PubMed
  95. Angew. Chem. 2016, 128, 4040-4044. - PubMed
  96. R. Huang, J. Rintjema, J. González-Fabra, E. Martín, E. C. Escudero-Adán, C. Bo, A. Urakawa, A. W. Kleij, Nat. Catal. 2019, 2, 62-70. - PubMed
  97. T.-Q. Xu, D. J. Darensbourg, J. Am. Chem. Soc. 2011, 133, 15191-15199. - PubMed
  98. C. Maquilón, B. Limburg, V. Laserna, D. Garay-Ruiz, J. González-Fabra, C. Bo, M. Martínez Belmonte, E. C. Escudero-Adán, A. W. Kleij, Organometallics 2020, 39, 1642-1651. - PubMed
  99. S. Sopeña, M. Cozzolino, C. Maquilón, E. C. Escudero-Adán, M. Martínez Belmonte, A. W. Kleij, Angew. Chem. Int. Ed. 2018, 57, 11203-11207; - PubMed
  100. Angew. Chem. 2018, 130, 11373-11377. - PubMed
  101. G. B. Payne, J. Org. Chem. 1962, 27, 3819-3822. - PubMed
  102. C. Qiao, A. Villar-Yanez, J. Sprachmann, B. Limburg, C. Bo, A. W. Kleij, Angew. Chem. Int. Ed. 2020, 59, 18446-18451; - PubMed
  103. Angew. Chem. 2020, 132, 18604-18609. - PubMed
  104. For the ROP of six-membered cyclic carbonates see: - PubMed
  105. H. Matsukizono, T. Endo, Polym. Chem. 2016, 54, 487-497; - PubMed
  106. D. J. Darensbourg, A. I. Moncada, S.-H. Wei, Macromolecules 2011, 44, 2568-2576; - PubMed
  107. G. L. Gregory, G. Kociok-Köhn, A. Buchard, Polym. Chem. 2017, 8, 2093-2104. - PubMed
  108. F. Della Monica, A. Buonerba, A. Grassi, C. Capacchione, S. Milione ChemSusChem 2016, 9, 3457-3464. - PubMed
  109. J. A. Castro-Osma, M. North, X. Wu, Chem. Eur. J. 2014, 20, 15005-15008. - PubMed
  110. J. A. Castro-Osma, M. North, W. K. Offermans, W. Leitner, T. E. Müller, ChemSusChem 2016, 9, 791-794. - PubMed
  111. M. Sengoden, M. North, A. C. Whitwood, ChemSusChem 2019, 12, 3296-3303. - PubMed
  112.   - PubMed
  113. S. Minakata, I. Sasaki, T. Ide, Angew. Chem. Int. Ed. 2010, 49, 1309-1311; - PubMed
  114. Angew. Chem. 2010, 122, 1331-1333; - PubMed
  115. Y. Takeda, S. Okumura, S. Tone, I. Sasaki, S. Minakata, Org. Lett. 2012, 14, 4874-4877. - PubMed
  116. Z. Lai, R. Zhang, Q. Feng, J. Sun, Chem. Sci. 2020, 11, 9945-9949. - PubMed
  117. See for instance: - PubMed
  118. D. J. Darensbourg, A. Horn, Jr., A. I. Moncada, Green Chem. 2010, 12, 1376-1379; - PubMed
  119. T. M. McGuire, E. M. López-Vidal, G. L. Gregory, A. Buchard, J. CO2 Util. 2018, 27, 283-288. See also Ref. 18. - PubMed
  120. L. Houhua, C. Mazet, J. Am. Chem. Soc. 2015, 137, 10720-10727. - PubMed

Publication Types

Grant support