Display options
Share it on

Dev Dyn. 2021 Jun;250(6):822-837. doi: 10.1002/dvdy.257. Epub 2020 Oct 14.

Large-scale variation in single nucleotide polymorphism density within the laboratory axolotl (Ambystoma mexicanum).

Developmental dynamics : an official publication of the American Association of Anatomists

Nataliya Timoshevskaya, S Randal Voss, Caitlin N Labianca, Cassity R High, Jeramiah J Smith

Affiliations

  1. Department of Biology, University of Kentucky, Lexington, Kentucky, USA.
  2. Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA.
  3. Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA.
  4. Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky, USA.
  5. Paul Laurence Dunbar High School, Lexington, Kentucky, USA.
  6. Current Affiliation: Department of Biology, University of Rochester, Rochester, New York, USA.

PMID: 33001517 DOI: 10.1002/dvdy.257

Abstract

BACKGROUND: Recent efforts to assemble and analyze the Ambystoma mexicanum genome have dramatically improved the potential to develop molecular tools and pursue genome-wide analyses of genetic variation.

RESULTS: To better resolve the distribution and origins of genetic variation with A mexicanum, we compared DNA sequence data for two laboratory A mexicanum and one A tigrinum to identify 702 million high confidence polymorphisms distributed across the 32 Gb genome. While the wild-caught A tigrinum was generally more polymorphic in a genome-wide sense, several multi-megabase regions were identified from A mexicanum genomes that were actually more polymorphic than A tigrinum. Analysis of polymorphism and repeat content reveals that these regions likely originated from the intentional hybridization of A mexicanum and A tigrinum that was used to introduce the albino mutation into laboratory stocks.

CONCLUSIONS: Our findings show that axolotl genomes are variable with respect to introgressed DNA from a highly polymorphic species. It seems likely that other divergent regions will be discovered with additional sequencing of A mexicanum. This has practical implications for designing molecular probes and suggests a need to study A mexicanum phenotypic variation and genome evolution across the tiger salamander clade.

© 2020 Wiley Periodicals LLC.

Keywords: SNPs; axolotl; genome; hybrid; salamander

References

  1. Voss SR, Epperlein HH, Tanaka EM. Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies. Cold Spring Harb Protoc. 2009;(8). https://doi.org/10.1101/pdb.emo128. - PubMed
  2. Voss SR, Woodcock MR, Zambrano L. A tale of two axolotls. Bioscience. 2015;65(12):1134-1140. https://doi.org/10.1093/biosci/biv153. - PubMed
  3. Voss SR, Palumbo A, Nagarajan R, et al. Gene expression during the first 28 days of axolotl limb regeneration I: experimental design and global analysis of gene expression. Regeneration (Oxf). 2015;2(3):120-136. https://doi.org/10.1002/reg2.37. - PubMed
  4. Dwaraka VB, Smith JJ, Woodcock MR, Voss SR. Comparative transcriptomics of limb regeneration: identification of conserved expression changes among three species of Ambystoma. Genomics. 2019;111(6):1216-1225. https://doi.org/10.1016/j.ygeno.2018.07.017. - PubMed
  5. Voss SR, Ponomareva LV, Dwaraka VB, et al. HDAC regulates transcription at the outset of axolotl tail regeneration. Sci Rep. 2019;9(1):6751. https://doi.org/10.1038/s41598-019-43230-6. - PubMed
  6. Voss SR, Shaffer HB. Adaptive evolution via a major gene effect: paedomorphosis in the Mexican axolotl. Proc Natl Acad Sci U S A. 1997;94(25):14185-14189. https://doi.org/10.1073/pnas.94.25.14185. - PubMed
  7. Woodcock MR, Vaughn-Wolfe J, Elias A, et al. Identification of mutant genes and Introgressed Tiger salamander DNA in the laboratory axolotl, Ambystoma mexicanum. Sci Rep. 2017;7(1):6. https://doi.org/10.1038/s41598-017-00059-1. - PubMed
  8. Smith JJ, Timoshevskaya N, Timoshevskiy VA, Keinath MC, Hardy D, Voss SR. A chromosome-scale assembly of the axolotl genome. Genome Res. 2019;29(2):317-324. https://doi.org/10.1101/gr.241901.118. - PubMed
  9. Keinath MC, Timoshevskaya N, Timoshevskiy VA, Voss SR, Smith JJ. Miniscule differences between sex chromosomes in the giant genome of a salamander. Sci Rep. 2018;8(1):17882. https://doi.org/10.1038/s41598-018-36209-2. - PubMed
  10. Page RB, Boley MA, Kump DK, Voss SR. Genomics of a metamorphic timing QTL: met1 maps to a unique genomic position and regulates morph and species-specific patterns of brain transcription. Genome Biol Evol. 2013;5(9):1716-1730. https://doi.org/10.1093/gbe/evt123. - PubMed
  11. Humphrey RR. Albino axolotls from an albino tiger salamander through hybridization. J Hered May-Jun. 1967;58(3):95-101. https://doi.org/10.1093/oxfordjournals.jhered.a107572. - PubMed
  12. Keinath MC, Timoshevskiy VA, Timoshevskaya NY, Tsonis PA, Voss SR, Smith JJ. Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing. Sci Rep. 2015;5:16413. https://doi.org/10.1038/srep16413. - PubMed
  13. Nowoshilow S, Schloissnig S, Fei JF, et al. The axolotl genome and the evolution of key tissue formation regulators. Nature. 2018;554(7690):50-55. https://doi.org/10.1038/nature25458. - PubMed
  14. Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at UCSC. Genome Res. 2002;12(6):996-1006. https://doi.org/10.1101/gr.229102. - PubMed
  15. Smith JJ, Putta S, Walker JA, et al. Sal-site: integrating new and existing ambystomatid salamander research and informational resources. BMC Genomics. 2005;6:181. https://doi.org/10.1186/1471-2164-6-181. - PubMed
  16. Baddar NW, Woodcock MR, Khatri S, Kump DK, Voss SR. Sal-site: research resources for the Mexican axolotl. Methods Mol Biol. 2015;1290:321-336. https://doi.org/10.1007/978-1-4939-2495-0_25. - PubMed
  17. Shaffer HB, McKnight ML. The polytypic species revisited: genetic differentiation and molecular Phylogenetics of the Tiger salamander Ambystoma tigrinum (Amphibia: Caudata) complex. Evolution. 1996;50(1):417-433. https://doi.org/10.1111/j.1558-5646.1996.tb04503.x. - PubMed
  18. Hardy GH. Mendelian proportions in a mixed population. Science. 1908;28(706):49-50. https://doi.org/10.1126/science.28.706.49. - PubMed
  19. Weinberg W. Über den Nachweis der Vererbung beim Menschen. Jahreshefte Des Vereins für vaterländische Naturkunde in Württemberg. 1908;64:368-382. - PubMed
  20. Caballero-Perez J, Espinal-Centeno A, Falcon F, et al. Transcriptional landscapes of axolotl (Ambystoma mexicanum). Dev Biol. 2018;433(2):227-239. https://doi.org/10.1016/j.ydbio.2017.08.022. - PubMed
  21. Voss SR, Smith JJ. Evolution of salamander life cycles: a major-effect quantitative trait locus contributes to discrete and continuous variation for metamorphic timing. Genetics. 2005;170(1):275-281. https://doi.org/10.1534/genetics.104.038273. - PubMed
  22. Smith JJ, Voss SR. Amphibian sex determination: segregation and linkage analysis using members of the tiger salamander species complex (Ambystoma mexicanum and A. t. tigrinum). Heredity (Edinb). 2009;102(6):542-548. https://doi.org/10.1038/hdy.2009.15. - PubMed
  23. Cuny R, Malacinski GM. Banding differences between tiger salamander and axolotl chromosomes. Can J Genet Cytol. 1985;27(5):510-514. https://doi.org/10.1139/g85-076. - PubMed
  24. Smith JJ, Sumiyama K, Amemiya CT. A living fossil in the genome of a living fossil: harbinger transposons in the coelacanth genome. Mol Biol Evol. 2012;29(3):985-993. https://doi.org/10.1093/molbev/msr267. - PubMed
  25. Elewa A, Wang H, Talavera-Lopez C, et al. Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nat Commun. 2017;8(1):2286. https://doi.org/10.1038/s41467-017-01964-9. - PubMed
  26. Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754-1760. https://doi.org/10.1093/bioinformatics/btp324. - PubMed
  27. Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078-2079. https://doi.org/10.1093/bioinformatics/btp352. - PubMed
  28. Tischler G, Leonard S. Biobambam: tools for read pair collation based algorithms on BAM files. Source Code Biol Med. 2014;9:13. - PubMed
  29. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987-2993. https://doi.org/10.1093/bioinformatics/btr509. - PubMed
  30. Quinlan AR. BEDTools: the Swiss-Army tool for genome feature analysis. Curr Protoc Bioinformatics. 2014;47:11 12 1-34. https://doi.org/10.1002/0471250953.bi1112s47. - PubMed
  31. Cingolani P, Platts A, Wang le L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80-92. https://doi.org/10.4161/fly.19695. - PubMed
  32. Smit AFA, Hubley R, Green P. RepeatMasker. Unpublished data. 2020; open-4.0.9. - PubMed
  33. Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. https://doi.org/10.1186/1471-2105-10-421. - PubMed
  34. Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol. 2011;7:539. https://doi.org/10.1038/msb.2011.75. - PubMed
  35. Madeira F, Park YM, Lee J, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47(W1):W636-W641. https://doi.org/10.1093/nar/gkz268. - PubMed
  36. Untergasser A, Cutcutache I, Koressaar T, et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. https://doi.org/10.1093/nar/gks596. - PubMed
  37. Sambrook J, Russell DW, Sambrook J. The Condensed Protocols from Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2006:800. - PubMed
  38. Torres-Sánchez M. Variation under domestication in animal models: the case of the Mexican axolotl. BMC Genomics. 2020;21:827. https://doi.org/10.1186/s12864-020-07248-9. - PubMed
  39. Bryant DM, Johnson K, DiTommaso T, et al. A tissue-mapped axolotl De novo Transcriptome enables identification of limb regeneration factors. Cell Rep. 2017;18(3):762-776. https://doi.org/10.1016/j.celrep.2016.12.063. - PubMed
  40. Kerdivel G, Blugeon C, Fund C, Rigolet M, Sachs LM, Buisine N. Opposite T3 response of ACTG1-FOS subnetwork differentiate tailfin fate in Xenopus tadpole and post-hatching axolotl. Front Endocrinol (Lausanne). 2019;10:194. https://doi.org/10.3389/fendo.2019.00194. - PubMed
  41. Jiang P, Nelson JD, Leng N, et al. Analysis of embryonic development in the unsequenced axolotl: waves of transcriptomic upheaval and stability. Dev Biol. 2017;426(2):143-154. https://doi.org/10.1016/j.ydbio.2016.05.024. - PubMed
  42. Bryant DM, Sousounis K, Payzin-Dogru D, et al. Identification of regenerative roadblocks via repeat deployment of limb regeneration in axolotls. NPJ Regen Med. 2017;2:30. https://doi.org/10.1038/s41536-017-0034-z. - PubMed
  43. Natarajan N, Abbas Y, Bryant DM, et al. Complement receptor C5aR1 plays an evolutionarily conserved role in successful cardiac regeneration. Circulation. 2018;137(20):2152-2165. https://doi.org/10.1161/CIRCULATIONAHA.117.030801. - PubMed
  44. Wu CH, Tsai MH, Ho CC, Chen CY, Lee HS. De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration. BMC Genomics. 2013;14:434. https://doi.org/10.1186/1471-2164-14-434. - PubMed
  45. McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-1303. https://doi.org/10.1101/gr.107524.110. - PubMed
  46. Zhao H, Sun Z, Wang J, Huang H, Kocher JP, Wang L. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics. 2014;30(7):1006-1007. https://doi.org/10.1093/bioinformatics/btt730. - PubMed

Publication Types

Grant support