Display options
Share it on

Mol Psychiatry. 2021 Jul;26(7):3634-3645. doi: 10.1038/s41380-020-00907-z. Epub 2020 Oct 13.

Resting state network functional connectivity abnormalities in systemic lupus erythematosus: correlations with neuropsychiatric impairment.

Molecular psychiatry

Raffaello Bonacchi, Maria A Rocca, Giuseppe A Ramirez, Enrica P Bozzolo, Valentina Canti, Paolo Preziosa, Paola Valsasina, Gianna C Riccitelli, Alessandro Meani, Lucia Moiola, Patrizia Rovere-Querini, Angelo A Manfredi, Massimo Filippi

Affiliations

  1. Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
  2. Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
  3. Vita-Salute San Raffaele University, Milan, Italy.
  4. Unit of Immunology, Rheumatology, Allergy and Rare Diseases & Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
  5. Unit of General Medicine and Advanced Care, IRCCS San Raffaele Scientific Institute, Milan, Italy.
  6. Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy. [email protected].
  7. Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. [email protected].
  8. Vita-Salute San Raffaele University, Milan, Italy. [email protected].
  9. Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. [email protected].

PMID: 33051605 DOI: 10.1038/s41380-020-00907-z

Abstract

Neuropsychiatric manifestations are highly prevalent in systemic lupus erythematosus (SLE)-patients. We aimed to unravel the substrates of these manifestations by investigating abnormalities of resting state (RS) functional connectivity (FC) and their correlations with neuropsychiatric variables in SLE-patients. Thirty-two SLE-patients and 32 age- and sex-matched healthy controls (HC) underwent brain 3T RS fMRI. Neuropsychological assessment was performed for all SLE-patients. The main large-scale cognitive and psychiatric functional networks were derived and between-group comparisons and correlations with neuropsychological measures were performed. Compared to HC, SLE-patients exhibited increased RS FC in the right middle cingulate cortex and decreased RS FC in the left precuneus within default-mode network (DMN). They also showed increased RS FC in the left cerebellar crus I and left posterior cingulate cortex, and decreased RS FC in the left angular gyrus within working-memory networks (WMN). Compared to HC, SLE-patients exhibited increased RS FC in the left insular cortex and decreased RS FC in the right anterior cingulate cortex within salience network (SN), as well as decreased RS FC in the right middle frontal gyrus within executive-control network (ECN). Correlation analysis indicated a maladaptive role for left angular gyrus and cerebellar RS FC abnormalities in WMN, affecting memory and executive functions; and for precuneus and insular abnormalities in DMN and SN for psychiatric symptoms. Cingulate cortex modifications within DMN and SN correlated with better memory and global cognitive performance. Significant RS FC alterations in relevant cognitive and psychiatric networks occur in SLE-patients and participate in the pathophysiology of neuropsychiatric symptoms.

© 2020. The Author(s), under exclusive licence to Springer Nature Limited.

References

  1. Schwartz N, Stock AD, Putterman C. Neuropsychiatric lupus: new mechanistic insights and future treatment directions. Nat Rev Rheumatol. 2019;15:137–52. - PubMed
  2. Hanly JG, Urowitz MB, Su L, Bae SC, Gordon C, Wallace DJ, et al. Prospective analysis of neuropsychiatric events in an international disease inception cohort of patients with systemic lupus erythematosus. Ann Rheum Dis. 2010;69:529–35. - PubMed
  3. Appenzeller S, Bonilha L, Rio PA, Min Li L, Costallat LT, Cendes F. Longitudinal analysis of gray and white matter loss in patients with systemic lupus erythematosus. Neuroimage. 2007;34:694–701. - PubMed
  4. Postal M, Lapa AT, Reis F, Rittner L, Appenzeller S. Magnetic resonance imaging in neuropsychiatric systemic lupus erythematosus: current state of the art and novel approaches. Lupus. 2017;26:517–21. - PubMed
  5. Preziosa P, Rocca MA, Ramirez GA, Bozzolo EP, Canti V, Pagani E, et al. Structural and functional brain connectomes in patients with systemic lupus erythematosus. Eur J Neurol. 2020;27:113–e2. - PubMed
  6. Ercan E, Ingo C, Tritanon O, Magro-Checa C, Smith A, Smith S, et al. A multimodal MRI approach to identify and characterize microstructural brain changes in neuropsychiatric systemic lupus erythematosus. Neuroimage Clin. 2015;8:337–44. - PubMed
  7. Kozora E, Filley CM, Erkan D, Ulug AM, Vo A, Ramon G, et al. Longitudinal evaluation of diffusion tensor imaging and cognition in systemic lupus erythematosus. Lupus. 2018;27:1810–8. - PubMed
  8. Jung RE, Caprihan A, Chavez RS, Flores RA, Sharrar J, Qualls CR, et al. Diffusion tensor imaging in neuropsychiatric systemic lupus erythematosus. BMC Neurol. 2010;10:65. - PubMed
  9. Schmidt-Wilcke T, Cagnoli P, Wang P, Schultz T, Lotz A, McCune WJ, et al. Diminished white matter integrity in patients with systemic lupus erythematosus. Neuroimage Clin. 2014;5:291–7. - PubMed
  10. Filippi M, Bruck W, Chard D, Fazekas F, Geurts JJG, Enzinger C, et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 2019;18:198–210. - PubMed
  11. Mikdashi JA. Altered functional neuronal activity in neuropsychiatric lupus: a systematic review of the fMRI investigations. Semin Arthritis Rheum. 2016;45:455–62. - PubMed
  12. Nystedt J, Mannfolk P, Jonsen A, Bengtsson A, Nilsson P, Sundgren PC, et al. Functional connectivity changes in systemic lupus erythematosus: a resting-state study. Brain Connect. 2018;8:220–34. - PubMed
  13. Lin Y, Zou QH, Wang J, Wang Y, Zhou DQ, Zhang RH, et al. Localization of cerebral functional deficits in patients with non-neuropsychiatric systemic lupus erythematosus. Hum Brain Mapp. 2011;32:1847–55. - PubMed
  14. Nystedt J, Mannfolk P, Jonsen A, Nilsson P, Strandberg TO, Sundgren PC. Functional connectivity changes in core resting state networks are associated with cognitive performance in systemic lupus erythematosus. J Comp Neurol. 2019;527:1837–56. - PubMed
  15. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971;9:97–113. - PubMed
  16. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725. - PubMed
  17. Petri M, Orbai AM, Alarcon GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64:2677–86. - PubMed
  18. The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum. 1999;42:599–608. https://pubmed.ncbi.nlm.nih.gov/10211873/ . - PubMed
  19. Gladman DD, Ibanez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol. 2002;29:288–91. - PubMed
  20. Mosca M, Bencivelli W, Vitali C, Carrai P, Neri R, Bombardieri S. The validity of the ECLAM index for the retrospective evaluation of disease activity in systemic lupus erythematosus. Lupus. 2000;9:445–50. - PubMed
  21. Yee CS, Cresswell L, Farewell V, Rahman A, Teh LS, Griffiths B, et al. Numerical scoring for the BILAG-2004 index. Rheumatology. 2010;49:1665–9. - PubMed
  22. Urowitz MB, Gladman DD, Ibanez D, Fortin PR, Bae SC, Gordon C, et al. Evolution of disease burden over five years in a multicenter inception systemic lupus erythematosus cohort. Arthritis Care Res. 2012;64:132–7. - PubMed
  23. Spinnler H, Tognoni G. Standardizzazione e taratura italiana di test neuropsicologici. It J Neurol Sci 1987;6 (Suppl 8): 1-120. - PubMed
  24. Camp SJ, Stevenson VL, Thompson AJ, Miller DH, Borras C, Auriacombe S, et al. Cognitive function in primary progressive and transitional progressive multiple sclerosis: a controlled study with MRI correlates. Brain 1999;122(Pt 7):1341–8. - PubMed
  25. Ruano L, Portaccio E, Goretti B, Niccolai C, Severo M, Patti F, et al. Age and disability drive cognitive impairment in multiple sclerosis across disease subtypes. Mult Scler. 2017;23:1258–67. - PubMed
  26. Bruce JM, Hancock LM, Arnett P, Lynch S. Treatment adherence in multiple sclerosis: association with emotional status, personality, and cognition. J Behav Med. 2010;33:219–27. - PubMed
  27. Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, Jacobs GA. Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press; 1983. - PubMed
  28. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–71. - PubMed
  29. Chard DT, Jackson JS, Miller DH, Wheeler-Kingshott CA. Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. J Magn Reson Imaging. 2010;32:223–8. - PubMed
  30. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001;14:140–51. - PubMed
  31. Himberg J, Hyvarinen A, Esposito F. Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 2004;22:1214–22. - PubMed
  32. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98:676–82. - PubMed
  33. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56. - PubMed
  34. Linden DE. The working memory networks of the human brain. Neuroscientist 2007;13:257–67. - PubMed
  35. Unterman A, Nolte JE, Boaz M, Abady M, Shoenfeld Y, Zandman-Goddard G. Neuropsychiatric syndromes in systemic lupus erythematosus: a meta-analysis. Semin Arthritis Rheum. 2011;41:1–11. - PubMed
  36. Bortoluzzi A, Scire CA, Govoni M. Attribution of Neuropsychiatric Manifestations to Systemic Lupus Erythematosus. Front Med. 2018;5:68. - PubMed
  37. Benedict RH, Shucard JL, Zivadinov R, Shucard DW. Neuropsychological impairment in systemic lupus erythematosus: a comparison with multiple sclerosis. Neuropsychol Rev. 2008;18:149–66. - PubMed
  38. Leslie B, Crowe SF. Cognitive functioning in systemic lupus erythematosus: a meta-analysis. Lupus. 2018;27:920–9. - PubMed
  39. Giannelou M, Tseronis D, Antypa E, Mavragani CP. Anxiety and extraversion in lupus-related atherosclerosis. Front Psychiatry. 2018;9:246. - PubMed
  40. Valsasina P, Hidalgo de la Cruz M, Filippi M, Rocca MA. Characterizing rapid fluctuations of resting state functional connectivity in demyelinating, neurodegenerative, and psychiatric conditions: from static to time-varying analysis. Front Neurosci. 2019;13:618. - PubMed
  41. Chahine G, Richter A, Wolter S, Goya-Maldonado R, Gruber O. Disruptions in the left frontoparietal network underlie resting state endophenotypic markers in schizophrenia. Hum Brain Mapp. 2017;38:1741–50. - PubMed
  42. Baker JT, Dillon DG, Patrick LM, Roffman JL, Brady RO Jr., Pizzagalli DA, et al. Functional connectomics of affective and psychotic pathology. Proc Natl Acad Sci USA. 2019;116:9050–9. - PubMed
  43. Hou J, Lin Y, Zhang W, Song L, Wu W, Wang J, et al. Abnormalities of frontal-parietal resting-state functional connectivity are related to disease activity in patients with systemic lupus erythematosus. PLoS One. 2013;8:e74530. - PubMed
  44. Rocca MA, De Meo E, Filippi M. Functional MRI in investigating cognitive impairment in multiple sclerosis. Acta Neurol Scand. 2016;134(Suppl 200):39–46. - PubMed
  45. Filippi M, Riccitelli G, Mattioli F, Capra R, Stampatori C, Pagani E, et al. Multiple sclerosis: effects of cognitive rehabilitation on structural and functional MR imaging measures-an explorative study. Radiology 2012;262:932–40. - PubMed
  46. Hohenfeld C, Werner CJ, Reetz K. Resting-state connectivity in neurodegenerative disorders: Is there potential for an imaging biomarker? Neuroimage Clin. 2018;18:849–70. - PubMed
  47. Raichle ME. The brain’s default mode network. Annu Rev Neurosci. 2015;38:433–47. - PubMed
  48. Margulies DS, Uddin LQ. Network convergence zones in the anterior midcingulate cortex. Handb Clin Neurol. 2019;166:103–11. - PubMed
  49. DiFrancesco MW, Gitelman DR, Klein-Gitelman MS, Sagcal-Gironella AC, Zelko F, Beebe D, et al. Functional neuronal network activity differs with cognitive dysfunction in childhood-onset systemic lupus erythematosus. Arthritis Res Ther. 2013;15:R40. - PubMed
  50. Yuan C, Zhu H, Ren Z, Yuan M, Gao M, Zhang Y, et al. Precuneus-related regional and network functional deficits in social anxiety disorder: a resting-state functional MRI study. Compr Psychiatry. 2018;82:22–9. - PubMed
  51. Andreescu C, Mennin D, Tudorascu D, Sheu LK, Walker S, Banihashemi L, et al. The many faces of anxiety-neurobiological correlates of anxiety phenotypes. Psychiatry Res. 2015;234:96–105. - PubMed
  52. Cunningham SI, Tomasi D, Volkow ND. Structural and functional connectivity of the precuneus and thalamus to the default mode network. Hum Brain Mapp. 2017;38:938–56. - PubMed
  53. Matsushita H, Latt HM, Koga Y, Nishiki T, Matsui H. Oxytocin and stress: neural mechanisms, stress-related disorders, and therapeutic approaches. Neuroscience. 2019;417:1–10. - PubMed
  54. Philip NS, Barredo J, van ‘t Wout-Frank M, Tyrka AR, Price LH, Carpenter LL. Network mechanisms of clinical response to transcranial magnetic stimulation in posttraumatic stress disorder and major depressive disorder. Biol Psychiatry. 2018;83:263–72. - PubMed
  55. Thakral PP, Madore KP, Schacter DL. A role for the left angular gyrus in episodic simulation and memory. J Neurosci. 2017;37:8142–9. - PubMed
  56. Bemis DK, Pylkkanen L. Basic linguistic composition recruits the left anterior temporal lobe and left angular gyrus during both listening and reading. Cereb Cortex. 2013;23:1859–73. - PubMed
  57. Giannouli V, Tsolaki M. Are left angular gyrus and amygdala volumes important for financial capacity in mild cognitive impairment? Hell J Nucl Med. 2019;22:160–4. - PubMed
  58. Vatansever D, Manktelow AE, Sahakian BJ, Menon DK, Stamatakis EA. Angular default mode network connectivity across working memory load. Hum Brain Mapp. 2017;38:41–52. - PubMed
  59. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain 2014;137:12–32. - PubMed
  60. Schmahmann JD, Guell X, Stoodley CJ, Halko MA. The theory and neuroscience of cerebellar cognition. Annu Rev Neurosci. 2019;42:337–64. - PubMed
  61. Simioni AC, Dagher A, Fellows LK. Compensatory striatal-cerebellar connectivity in mild-moderate Parkinson’s disease. Neuroimage Clin. 2016;10:54–62. - PubMed
  62. Connor LT, DeShazo Braby T, Snyder AZ, Lewis C, Blasi V, Corbetta M. Cerebellar activity switches hemispheres with cerebral recovery in aphasia. Neuropsychologia 2006;44:171–7. - PubMed
  63. Feng X, Li L, Zhang M, Yang X, Tian M, Xie W, et al. Dyslexic children show atypical cerebellar activation and cerebro-cerebellar functional connectivity in orthographic and phonological processing. Cerebellum 2017;16:496–507. - PubMed
  64. Sliz D, Hayley S. Major depressive disorder and alterations in insular cortical activity: a review of current functional magnetic imaging research. Front Hum Neurosci. 2012;6:323. - PubMed
  65. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA. 2007;104:11073–8. - PubMed
  66. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89. - PubMed
  67. Carlesimo GA, Caltagirone C, Gainotti G. The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery. Eur Neurol. 1996;36:378–84. - PubMed
  68. Caffarra P, Vezzadini G, Dieci F, Zonato F, Venneri A. Rey-Osterrieth complex figure: normative values in an Italian population sample. Neurol Sci. 2002;22:443–7. - PubMed
  69. Gronwall DM. Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills. 1977;44:367–73. - PubMed
  70. Smith A. Symbol Digit Modalities Test (SDMT). Manual (Revised). Los Angeles, CA; Western Psychological Services, 1982. - PubMed
  71. Nocentini U, Giordano A, Di Vincenzo S, Panella M, Pasqualetti P. The demographic, clinical, and conventional MRI symbol digit modalities test - oral version: Italian normative data. Funct Neurol. 2006;21:93–6. - PubMed
  72. Caffarra P, Vezzadini G, Dieci F, Zonato F, Venneri A. A short version of the Stroop test: normative data in an Italian population sample. Nuova Riv Neurol. 2002;12:111–5. - PubMed
  73. Pozzilli C, Bastianello S, Padovani A, Passafiume D, Millefiorini E, Bozzao L, et al. Anterior corpus callosum atrophy and verbal fluency in multiple sclerosis. Cortex. 1991;27:441–5. - PubMed
  74. Heaton RK, Chelune GJ, Talley JL, Kay GG, Curtiss G. Wisconsin Card sorting test (WCST) manual revised and expanded. Odessa, FL: Psychological Assessment Resources Inc; 1993. - PubMed
  75. Monaco M, Costa A, Caltagirone C, Carlesimo GA. Forward and backward span for verbal and visuo-spatial data: standardization and normative data from an Italian adult population. Neurol Sci. 2013;34:749–54. - PubMed
  76. Benton AL, Varney NR, Hamsher KD. Visuospatial judgment. A clinical test. Arch Neurol. 1978;35:364–7. - PubMed

Publication Types