Display options
Share it on

Sci Adv. 2020 Oct 14;6(42). doi: 10.1126/sciadv.abc3786. Print 2020 Oct.

The dynamics of linear polyubiquitin.

Science advances

Alexander Jussupow, Ana C Messias, Ralf Stehle, Arie Geerlof, Sara M Ø Solbak, Cristina Paissoni, Anders Bach, Michael Sattler, Carlo Camilloni

Affiliations

  1. Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching 85747, Germany.
  2. Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany.
  3. Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, Garching 85747, Germany.
  4. Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
  5. Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy.
  6. Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany. [email protected] [email protected].
  7. Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching 85747, Germany. [email protected] [email protected].

PMID: 33055165 PMCID: PMC7556843 DOI: 10.1126/sciadv.abc3786

Abstract

Polyubiquitin chains are flexible multidomain proteins, whose conformational dynamics enable them to regulate multiple biological pathways. Their dynamic is determined by the linkage between ubiquitins and by the number of ubiquitin units. Characterizing polyubiquitin behavior as a function of their length is hampered because of increasing system size and conformational variability. Here, we introduce a new approach to efficiently integrating small-angle x-ray scattering with simulations allowing us to accurately characterize the dynamics of linear di-, tri-, and tetraubiquitin in the free state as well as of diubiquitin in complex with NEMO, a central regulator in the NF-κB pathway. Our results show that the behavior of the diubiquitin subunits is independent of the presence of additional ubiquitin modules and that the dynamics of polyubiquitins with different lengths follow a simple model. Together with experimental data from multiple biophysical techniques, we then rationalize the 2:1 NEMO:polyubiquitin binding.

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

References

  1. Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4758-E4766 - PubMed
  2. Bioinformatics. 2017 Dec 15;33(24):3999-4000 - PubMed
  3. J Chem Theory Comput. 2014 Apr 8;10(4):1631-1637 - PubMed
  4. Cell Mol Life Sci. 2008 Aug;65(15):2397-406 - PubMed
  5. Mol Cell. 2017 May 18;66(4):488-502.e7 - PubMed
  6. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12562-6 - PubMed
  7. Phys Rev Lett. 2008 Jan 18;100(2):020603 - PubMed
  8. Nat Methods. 2019 Aug;16(8):670-673 - PubMed
  9. Sci Adv. 2016 Jan 22;2(1):e1501177 - PubMed
  10. J Am Chem Soc. 2013 Nov 6;135(44):16595-609 - PubMed
  11. Nature. 2012 Dec 13;492(7428):266-70 - PubMed
  12. J Chem Theory Comput. 2020 May 12;16(5):3205-3220 - PubMed
  13. Elife. 2015 Jun 19;4: - PubMed
  14. J Phys Chem B. 2006 Mar 2;110(8):3533-9 - PubMed
  15. Nature. 2011 Mar 31;471(7340):591-6 - PubMed
  16. PLoS Biol. 2013;11(6):e1001581 - PubMed
  17. J Mol Biol. 2017 Dec 8;429(24):3793-3800 - PubMed
  18. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 - PubMed
  19. Nature. 2009 Dec 3;462(7273):615-9 - PubMed
  20. J Cell Sci. 2016 Mar 1;129(5):875-80 - PubMed
  21. PLoS One. 2017 Nov 13;12(11):e0187936 - PubMed
  22. Chem Rev. 2016 Jul 27;116(14):7898-936 - PubMed
  23. Nature. 2015 Dec 17;528(7582):370-5 - PubMed
  24. EMBO Rep. 2009 Jul;10(7):706-13 - PubMed
  25. Annu Rev Biochem. 2012;81:203-29 - PubMed
  26. J Biol Chem. 2015 May 29;290(22):14130-9 - PubMed
  27. PLoS Comput Biol. 2018 Nov 16;14(11):e1006589 - PubMed
  28. Mol Cell. 2016 Jun 16;62(6):918-928 - PubMed
  29. Biochemistry. 2017 May 9;56(18):2379-2384 - PubMed
  30. Curr Opin Struct Biol. 2017 Feb;42:106-116 - PubMed
  31. PLoS Comput Biol. 2010 Jun 10;6(6):e1000810 - PubMed
  32. Annu Rev Biophys. 2011;40:41-62 - PubMed
  33. Acta Crystallogr D Struct Biol. 2016 Apr;72(Pt 4):524-35 - PubMed
  34. J Chem Theory Comput. 2015 Nov 10;11(11):5062-7 - PubMed
  35. Nat Rev Cancer. 2018 Feb;18(2):69-88 - PubMed
  36. J Appl Crystallogr. 2014 Jun 14;47(Pt 4):1190-1198 - PubMed
  37. Protein Sci. 2013 Jun;22(6):851-8 - PubMed
  38. Acta Crystallogr D Biol Crystallogr. 2012 Feb;68(Pt 2):102-8 - PubMed
  39. PLoS Comput Biol. 2014 Jul 03;10(7):e1003691 - PubMed
  40. PLoS Comput Biol. 2020 Apr 27;16(4):e1007870 - PubMed
  41. Nat Biotechnol. 2003 Aug;21(8):921-6 - PubMed
  42. Cell. 2009 Mar 20;136(6):1098-109 - PubMed
  43. Nat Struct Mol Biol. 2010 Aug;17(8):939-47 - PubMed
  44. Nature. 1997 Aug 7;388(6642):548-54 - PubMed
  45. Structure. 2013 Jul 2;21(7):1168-81 - PubMed
  46. Annu Rev Biochem. 2009;78:399-434 - PubMed
  47. Nano Rev. 2015 Feb 25;6:25661 - PubMed
  48. Structure. 2017 Jan 3;25(1):66-78 - PubMed
  49. EMBO Rep. 2009 May;10(5):466-73 - PubMed
  50. J Chem Theory Comput. 2009 Sep 8;5(9):2531-43 - PubMed
  51. Sci Rep. 2016 Aug 26;6:31232 - PubMed
  52. EMBO J. 2006 Oct 18;25(20):4877-87 - PubMed
  53. EMBO Rep. 2014 Jan;15(1):46-61 - PubMed
  54. J Chem Theory Comput. 2013 Sep 10;9(9): - PubMed
  55. J Phys Condens Matter. 2013 Dec 18;25(50):503101 - PubMed
  56. F1000 Biol Rep. 2011;3:26 - PubMed
  57. J Chem Theory Comput. 2012 Jul 10;8(7):2247-54 - PubMed
  58. Data Brief. 2016 Feb 09;7:81-8 - PubMed
  59. J Biol Chem. 2014 Mar 7;289(10):7068-81 - PubMed
  60. Genes Cells. 2004 Oct;9(10):865-75 - PubMed
  61. J Chem Phys. 2017 Apr 28;146(16):165102 - PubMed
  62. EMBO J. 2000 Jan 4;19(1):94-102 - PubMed
  63. J Biol Chem. 2011 Jul 22;286(29):26107-17 - PubMed
  64. Sci Rep. 2016 Jan 07;6:18934 - PubMed
  65. Biochem J. 2009 Jun 26;421(2):243-51 - PubMed
  66. J Chem Phys. 2007 Jan 7;126(1):014101 - PubMed
  67. Nat Rev Mol Cell Biol. 2014 Aug;15(8):503-8 - PubMed
  68. J Chem Theory Comput. 2020 Apr 14;16(4):2825-2834 - PubMed
  69. Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7704-9 - PubMed
  70. J Appl Crystallogr. 2012 Mar 15;45(Pt 2):342-350 - PubMed
  71. J Chem Theory Comput. 2013 Jan 8;9(1):687-97 - PubMed
  72. J Phys Chem B. 2007 Jul 12;111(27):7812-24 - PubMed
  73. Protein Expr Purif. 2005 May;41(1):207-34 - PubMed
  74. EMBO J. 2005 Oct 5;24(19):3353-9 - PubMed

Publication Types