Display options
Share it on

Nature. 2020 Oct;586(7829):369-372. doi: 10.1038/s41586-020-2794-7. Epub 2020 Oct 14.

H I 21-centimetre emission from an ensemble of galaxies at an average redshift of one.

Nature

Aditya Chowdhury, Nissim Kanekar, Jayaram N Chengalur, Shiv Sethi, K S Dwarakanath

Affiliations

  1. National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune, India.
  2. National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune, India. [email protected].
  3. Department of Astronomy and Astrophysics, Raman Research Institute, Bangalore, India.

PMID: 33057221 DOI: 10.1038/s41586-020-2794-7

Abstract

Baryonic processes in galaxy evolution include the infall of gas onto galaxies to form neutral atomic hydrogen, which is then converted to the molecular state (H

References

  1. Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014). - PubMed
  2. Chengalur, J. N., Braun, R. & Wieringa, M. HI in Abell 3128. Astron. Astrophys. 372, 768–774 (2001). - PubMed
  3. Swarup, G. et al. The Giant Metre-Wave Radio Telescope. Curr. Sci. 60, 95–105 (1991). - PubMed
  4. Gupta, Y. et al. The upgraded GMRT: opening new windows on the radio Universe. Curr. Sci. 113, 707–714 (2017). - PubMed
  5. Newman, J. A. et al. The DEEP2 galaxy redshift survey: design, observations, data reduction, and redshifts. Astrophys. J. Suppl. Ser. 208, 5 (2013). - PubMed
  6. Fernández, X. et al. Highest redshift image of neutral hydrogen in emission: a CHILES detection of a starbursting galaxy at z = 0.376. Astrophys. J. 824, L1 (2016). - PubMed
  7. Lah, P. et al. The H I content of star-forming galaxies at z = 0.24. Mon. Not. R. Astron. Soc. 376, 1357–1366 (2007). - PubMed
  8. Rhee, J. et al. Neutral atomic hydrogen (H I) gas evolution in field galaxies at z ~ 0.1 and ~0.2. Mon. Not. R. Astron. Soc. 435, 2693–2706 (2013). - PubMed
  9. Kanekar, N., Sethi, S. & Dwarakanath, K. S. The gas mass of star-forming galaxies at z ≈ 1.3. Astrophys. J. 818, L28 (2016). - PubMed
  10. Bera, A., Kanekar, N., Chengalur, J. N. & Bagla, J. S. Atomic hydrogen in star-forming galaxies at intermediate redshifts. Astrophys. J. 882, L7 (2019). - PubMed
  11. Weiner, B. J. et al. Ubiquitous outflows in DEEP2 spectra of star-forming galaxies at z = 1.4. Astrophys. J. 692, 187–211 (2009). - PubMed
  12. Catinella, B. et al. xGASS: total cold gas scaling relations and molecular-to-atomic gas ratios of galaxies in the local Universe. Mon. Not. R. Astron. Soc. 476, 875–895 (2018). - PubMed
  13. Brinchmann, J. et al. The physical properties of star-forming galaxies in the low-redshift Universe. Mon. Not. R. Astron. Soc. 351, 1151–1179 (2004). - PubMed
  14. Noeske, K. G. et al. Star formation in AEGIS field galaxies since z = 1.1: the dominance of gradually declining star formation, and the main sequence of star-forming galaxies. Astrophys. J. 660, L43–L46 (2007). - PubMed
  15. Rodighiero, G. et al. The lesser role of starbursts in star formation at z = 2. Astrophys. J. 739, L40 (2011). - PubMed
  16. Yun, M. S., Reddy, N. A. & Condon, J. J. Radio properties of infrared-selected galaxies in the IRAS 2 Jy sample. Astrophys. J. 554, 803–822 (2001). - PubMed
  17. White, R. L., Helfand, D. J., Becker, R. H., Glikman, E. & de Vries, W. Signals from the noise: image stacking for quasars in the FIRST survey. Astrophys. J. 654, 99–114 (2007). - PubMed
  18. Bera, A., Kanekar, N., Weiner, B. J., Sethi, S. & Dwarakanath, K. S. Probing star formation in galaxies at z ≈ 1 via a Giant Metrewave Radio Telescope stacking analysis. Astrophys. J. 865, 39 (2018). - PubMed
  19. Tacconi, L. J. et al. PHIBSS: molecular gas content and scaling relations in z ~ 1–3 massive, main-sequence star-forming galaxies. Astrophys. J. 768, 74 (2013). - PubMed
  20. Saintonge, A. et al. xCOLD GASS: the complete IRAM 30 m legacy survey of molecular gas for galaxy evolution studies. Astrophys. J. Suppl. Ser. 233, 22 (2017). - PubMed
  21. Jones, M. G., Haynes, M. P., Giovanelli, R. & Moorman, C. The ALFALFA H I mass function: a dichotomy in the low-mass slope and a locally suppressed ‘knee’ mass. Mon. Not. R. Astron. Soc. 477, 2–17 (2018). - PubMed
  22. Wolfe, A. M., Gawiser, E. & Prochaska, J. X. Damped Lyα systems. Annu. Rev. Astron. Astrophys. 43, 861–918 (2005). - PubMed
  23. Noterdaeme, P. et al. Column density distribution and cosmological mass density of neutral gas: Sloan Digital Sky Survey-III data release 9. Astron. Astrophys. 547, L1 (2012). - PubMed
  24. Chang, T. C., Pen, U.-L. & Bandura, K. An intensity map of hydrogen 21-cm emission at redshift z ≈ 0.8. Nature 466, 463–465 (2010). - PubMed
  25. Rao, S. M., Turnshek, D. A., Sardane, G. M. & Monier, E. M. The statistical properties of neutral gas at z < 1.65 from UV measurements of damped Lyman alpha systems. Mon. Not. R. Astron. Soc. 471, 3428–3442 (2017). - PubMed
  26. Willmer, C. N. A. et al. The Deep Evolutionary Exploratory Probe 2 galaxy redshift survey: the galaxy luminosity function to z ~ 1. Astrophys. J. 647, 853–873 (2006). - PubMed
  27. Crighton, N. H. M. et al. The neutral hydrogen cosmological mass density at z = 5. Mon. Not. R. Astron. Soc. 452, 217–234 (2015). - PubMed
  28. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A. et al.) 127–130 (ASP, 2007). - PubMed
  29. Offringa, A. R., van de Gronde, J. J. & Roerdink, J. B. T. M. A morphological algorithm for improving radio-frequency interference detection. Astron. Astrophys. 539, A95 (2012). - PubMed
  30. Cornwell, T. J., Golap, K. & Bhatnagar, S. The noncoplanar baselines effect in radio interferometry: the W-projection algorithm. IEEE J. Sel. Top. Signal Process. 2, 647–657 (2008). - PubMed
  31. Rau, U. & Cornwell, T. J. A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry. Astron. Astrophys. 532, A71 (2011). - PubMed
  32. Maddox, N., Hess, K. M., Blyth, S. L. & Jarvis, M. J. Comparison of H I and optical redshifts of galaxies — the impact of redshift uncertainties on spectral line stacking. Mon. Not. R. Astron. Soc. 433, 2613–2625 (2013). - PubMed
  33. Elson, E. C., Baker, A. J. & Blyth, S. L. On the uncertainties of results derived from H I spectral line stacking experiments. Mon. Not. R. Astron. Soc. 486, 4894–4903 (2019). - PubMed
  34. Condon, J. J., Cotton, W. D. & Broderick, J. J. Radio sources and star formation in the local Universe. Astron. J. 124, 675–689 (2002). - PubMed
  35. Wang, J. et al. New lessons from the H I size–mass relation of galaxies. Mon. Not. R. Astron. Soc. 460, 2143–2151 (2016). - PubMed
  36. Elson, E. C., Blyth, S. L. & Baker, A. J. Synthetic data products for future H I galaxy surveys: a tool for characterizing source confusion in spectral line stacking experiments. Mon. Not. R. Astron. Soc. 460, 4366–4381 (2016). - PubMed
  37. Obreschkow, D., Klöckner, H. R., Heywood, I., Levrier, F. & Rawlings, S. A virtual sky with extragalactic H I and CO lines for the Square Kilometre Array and the Atacama Large Millimeter/Submillimeter Array. Astrophys. J. 703, 1890–1903 (2009). - PubMed
  38. Condon, J. J. Radio emission from normal galaxies. Annu. Rev. Astron. Astrophys. 30, 575–611 (1992). - PubMed
  39. Hu, W. et al. An accurate low-redshift measurement of the cosmic neutral hydrogen density. Mon. Not. R. Astron. Soc. 489, 1619–1632 (2019). - PubMed
  40. Dénes, H., Kilborn, V. A. & Koribalski, B. S. New H I scaling relations to probe the H I content of galaxies via global H i-deficiency maps. Mon. Not. R. Astron. Soc. 444, 667–681 (2014). - PubMed

Publication Types