Display options
Share it on

Front Neurosci. 2020 Sep 11;14:895. doi: 10.3389/fnins.2020.00895. eCollection 2020.

Rapid Cortical Plasticity Induced by Active Associative Learning of Novel Words in Human Adults.

Frontiers in neuroscience

Alexandra M Razorenova, Boris V Chernyshev, Anastasia Yu Nikolaeva, Anna V Butorina, Andrey O Prokofyev, Nikita B Tyulenev, Tatiana A Stroganova

Affiliations

  1. Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia.
  2. Center for Computational and Data-Intensive Science and Engineering (CDISE), Skolkovo Institute of Science and Technology, Moscow, Russia.
  3. Department of Psychology, Higher School of Economics, Moscow, Russia.
  4. Department of Higher Nervous Activity, Lomonosov Moscow State University, Moscow, Russia.

PMID: 33013296 PMCID: PMC7516206 DOI: 10.3389/fnins.2020.00895

Abstract

Human speech requires that new words are routinely memorized, yet neurocognitive mechanisms of such acquisition of memory remain highly debatable. Major controversy concerns the question whether cortical plasticity related to word learning occurs in neocortical speech-related areas immediately after learning, or neocortical plasticity emerges only on the second day after a prolonged time required for consolidation after learning. The functional spatiotemporal pattern of cortical activity related to such learning also remains largely unknown. In order to address these questions, we examined magnetoencephalographic responses elicited in the cerebral cortex by passive presentations of eight novel pseudowords before and immediately after an operant conditioning task. This associative procedure forced participants to perform an active search for unique meaning of four pseudowords that referred to movements of left and right hands and feet. The other four pseudowords did not require any movement and thus were not associated with any meaning. Familiarization with novel pseudowords led to a bilateral repetition suppression of cortical responses to them; the effect started before or around the uniqueness point and lasted for more than 500 ms. After learning, response amplitude to pseudowords that acquired meaning was greater compared with response amplitude to pseudowords that were not assigned meaning; the effect was significant within 144-362 ms after the uniqueness point, and it was found only in the left hemisphere. Within this time interval, a learning-related selective response initially emerged in cortical areas surrounding the Sylvian fissure: anterior superior temporal sulcus, ventral premotor cortex, the anterior part of intraparietal sulcus and insula. Later within this interval, activation additionally spread to more anterior higher-tier brain regions, and reached the left temporal pole and the triangular part of the left inferior frontal gyrus extending to its orbital part. Altogether, current findings evidence rapid plastic changes in cortical representations of meaningful auditory word-forms occurring almost immediately after learning. Additionally, our results suggest that familiarization resulting from stimulus repetition and semantic acquisition resulting from an active learning procedure have separable effects on cortical activity.

Copyright © 2020 Razorenova, Chernyshev, Nikolaeva, Butorina, Prokofyev, Tyulenev and Stroganova.

Keywords: MEG; associative learning; cortical plasticity; familiarization; repetition suppression; semantic learning; word semantics

References

  1. Neuron. 2015 Dec 2;88(5):1027-1039 - PubMed
  2. Neuroimage. 2015 Aug 15;117:80-92 - PubMed
  3. J Cogn Neurosci. 2015 Apr;27(4):775-86 - PubMed
  4. Cogn Neurosci. 2012;3(3-4):227-237 - PubMed
  5. Trends Cogn Sci. 2013 Feb;17(2):89-98 - PubMed
  6. Neuropsychologia. 2017 Apr;98:56-67 - PubMed
  7. Neuroimage. 2017 Jul 15;155:450-459 - PubMed
  8. Sci Rep. 2016 Jul 22;6:30227 - PubMed
  9. Electroencephalogr Clin Neurophysiol. 1995 Sep;95(3):189-200 - PubMed
  10. Neuropsychologia. 2017 Oct;105:135-143 - PubMed
  11. Cereb Cortex. 2007 Aug;17(8):1858-66 - PubMed
  12. J Cogn Neurosci. 2014 Nov;26(11):2552-63 - PubMed
  13. Nat Neurosci. 1999 Dec;2(12):1131-6 - PubMed
  14. Trends Cogn Sci. 2012 Jun;16(6):317-21 - PubMed
  15. Front Psychol. 2014 Mar 05;5:151 - PubMed
  16. Neuron. 2008 Apr 24;58(2):186-94 - PubMed
  17. Comput Intell Neurosci. 2011;2011:879716 - PubMed
  18. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11800-6 - PubMed
  19. Psychon Bull Rev. 2019 Aug;26(4):1354-1366 - PubMed
  20. Brain Struct Funct. 2017 Apr;222(3):1231-1241 - PubMed
  21. J Neurophysiol. 2007 May;97(5):3532-43 - PubMed
  22. Cereb Cortex. 2009 Dec;19(12):2767-96 - PubMed
  23. Nat Rev Neurosci. 2010 Jan;11(1):53-60 - PubMed
  24. Neuron. 2006 Oct 19;52(2):371-81 - PubMed
  25. Brain Lang. 2014 Dec;139:10-22 - PubMed
  26. Cereb Cortex. 2007 Feb;17(2):425-33 - PubMed
  27. Med Biol Eng Comput. 1997 Mar;35(2):135-40 - PubMed
  28. Science. 2000 Feb 18;287(5456):1269-72 - PubMed
  29. Front Hum Neurosci. 2019 Sep 19;13:304 - PubMed
  30. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):E505-14 - PubMed
  31. PLoS One. 2014 Mar 18;9(3):e91988 - PubMed
  32. Nat Rev Neurosci. 2001 Jan;2(1):51-61 - PubMed
  33. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14792-7 - PubMed
  34. Cognition. 2003 Sep;89(2):105-32 - PubMed
  35. Neuroimage. 2012 Feb 1;59(3):2600-6 - PubMed
  36. J Neurosci. 2010 Dec 15;30(50):16864-7 - PubMed
  37. Neuroimage. 2013 Jan 15;65:349-63 - PubMed
  38. Neuroimage. 2013 Feb 15;67:111-8 - PubMed
  39. Nat Rev Neurosci. 2017 Jan;18(1):42-55 - PubMed
  40. Front Psychol. 2011 Nov 21;2:340 - PubMed
  41. Trends Cogn Sci. 2011 Nov;15(11):527-36 - PubMed
  42. Nat Neurosci. 2010 Nov;13(11):1428-32 - PubMed
  43. Nat Commun. 2012 Feb 28;3:711 - PubMed
  44. J Neurosci. 2016 Apr 6;36(14):4050-5 - PubMed
  45. Curr Opin Neurobiol. 2007 Apr;17(2):148-53 - PubMed
  46. Psychon Bull Rev. 2002 Dec;9(4):672-705 - PubMed
  47. Neuroimage. 2015 Sep;118:282-91 - PubMed
  48. Neurosci Lett. 2018 Feb 14;666:28-31 - PubMed
  49. J Neurophysiol. 2005 Sep;94(3):2239-50 - PubMed
  50. Philos Trans R Soc Lond B Biol Sci. 2009 Dec 27;364(1536):3711-35 - PubMed
  51. Trends Cogn Sci. 2019 Dec;23(12):989-1002 - PubMed
  52. Nat Rev Neurosci. 2004 Apr;5(4):279-90 - PubMed
  53. Annu Rev Psychol. 2011;62:621-47 - PubMed
  54. Brain Res Brain Res Rev. 2001 Oct;36(2-3):96-107 - PubMed
  55. Methods. 2001 Oct;25(2):249-71 - PubMed
  56. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1146-51 - PubMed
  57. Sensors (Basel). 2017 Dec 16;17(12): - PubMed
  58. Ann Neurol. 2005 Jan;57(1):8-16 - PubMed
  59. J Neurophysiol. 2010 Jun;103(6):3349-65 - PubMed
  60. Neuropsychologia. 2013 Apr;51(5):825-37 - PubMed
  61. Cereb Cortex. 2012 Nov;22(11):2622-33 - PubMed
  62. Cortex. 2017 Aug;93:155-165 - PubMed
  63. Neuropsychologia. 1971 Mar;9(1):97-113 - PubMed
  64. Neuroimage. 2006 May 15;31(1):160-71 - PubMed
  65. Trends Cogn Sci. 2006 Jan;10(1):14-23 - PubMed
  66. J Cogn Neurosci. 2017 Nov;29(11):1791-1802 - PubMed
  67. Neuroreport. 2006 Aug 21;17(12):1293-6 - PubMed
  68. Nat Rev Neurosci. 2004 Nov;5(11):887-92 - PubMed
  69. J Cogn Neurosci. 2001 Oct 1;13(7):967-85 - PubMed
  70. Cereb Cortex. 2013 Feb;23(2):315-22 - PubMed
  71. J Psycholinguist Res. 2020 Apr;49(2):187-198 - PubMed
  72. Philos Trans R Soc Lond B Biol Sci. 2009 Dec 27;364(1536):3773-800 - PubMed
  73. Neuroimage. 2005 Apr 15;25(3):958-68 - PubMed
  74. Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10114-9 - PubMed
  75. Front Neurosci. 2013 Dec 26;7:267 - PubMed
  76. Neurosci Bull. 2014 Jun;30(3):490-6 - PubMed

Publication Types