Display options
Share it on

Front Psychol. 2020 Sep 08;11:2053. doi: 10.3389/fpsyg.2020.02053. eCollection 2020.

The Relevance of Ecological Transitions to Intelligence in Marine Mammals.

Frontiers in psychology

Gordon B Bauer, Peter F Cook, Heidi E Harley

Affiliations

  1. Division of Social Sciences, New College of Florida, Sarasota, FL, United States.
  2. Mote Marine Laboratory, Sarasota, FL, United States.
  3. The Seas, Epcot®, Walt Disney World® Resorts, Lake Buena Vista, FL, United States.

PMID: 33013519 PMCID: PMC7505747 DOI: 10.3389/fpsyg.2020.02053

Abstract

Macphail's comparative approach to intelligence focused on associative processes, an orientation inconsistent with more multifaceted lay and scientific understandings of the term. His ultimate emphasis on associative processes indicated few differences in intelligence among vertebrates. We explore options more attuned to common definitions by considering intelligence in terms of richness of representations of the world, the interconnectivity of those representations, the ability to flexibly change those connections, and knowledge. We focus on marine mammals, represented by the amphibious pinnipeds and the aquatic cetaceans and sirenians, as animals that transitioned from a terrestrial existence to an aquatic one, experiencing major changes in ecological pressures. They adapted with morphological transformations related to streamlining the body, physiological changes in respiration and thermoregulation, and sensory/perceptual changes, including echolocation capabilities and diminished olfaction in many cetaceans, both in-air and underwater visual focus, and enhanced senses of touch in pinnipeds and sirenians. Having a terrestrial foundation on which aquatic capacities were overlaid likely affected their cognitive abilities, especially as a new reliance on sound and touch, and the need to surface to breath changed their interactions with the world. Vocal and behavioral observational learning capabilities in the wild and in laboratory experiments suggest versatility in group coordination. Empirical reports on aspects of intelligent behavior like problem-solving, spatial learning, and concept learning by various species of cetaceans and pinnipeds suggest rich cognitive abilities. The high energy demands of the brain suggest that brain-intelligence relationships might be fruitful areas for study when specific hypotheses are considered, e.g., brain mapping indicates hypertrophy of specific sensory areas in marine mammals. Modern neuroimaging techniques provide ways to study neural connectivity, and the patterns of connections between sensory, motor, and other cortical regions provide a biological framework for exploring how animals represent and flexibly use information in navigating and learning about their environment. At this stage of marine mammal research, it would still be prudent to follow Macphail's caution that it is premature to make strong comparative statements without more empirical evidence, but an approach that includes learning more about how animals flexibly link information across multiple representations could be a productive way of comparing species by allowing them to use their specific strengths within comparative tasks.

Copyright © 2020 Bauer, Cook and Harley.

Keywords: brain; cetaceans; intelligence; marine mammals; pinnipeds; sirenians

References

  1. Brain Behav Evol. 2015;86(3-4):145-63 - PubMed
  2. Cereb Cortex. 2015 Oct;25(10):3654-72 - PubMed
  3. J Exp Anal Behav. 1969 Jul;12(4):653-61 - PubMed
  4. Front Neuroanat. 2014 Nov 26;8:132 - PubMed
  5. IEEE Trans Biomed Eng. 2019 Aug;66(8):2140-2151 - PubMed
  6. Science. 1965 Jan 15;147(3655):300-1 - PubMed
  7. Vision Res. 2016 Aug;125:30-40 - PubMed
  8. J Comp Physiol A. 1994 Dec;175(6):791-800 - PubMed
  9. J Comp Psychol. 1998 Sep;112(3):292-305 - PubMed
  10. Brain Behav Evol. 2013;82(1):68-78 - PubMed
  11. Brain Behav Evol. 1994;44(3):156-65 - PubMed
  12. Curr Biol. 2012 Oct 23;22(20):R860-1 - PubMed
  13. J Acoust Soc Am. 1968 Jun;43(6):1412-24 - PubMed
  14. Am J Anat. 1987 Oct;180(2):126-42 - PubMed
  15. Anat Rec (Hoboken). 2007 Jun;290(6):507-13 - PubMed
  16. Naturwissenschaften. 2000 Nov;87(11):499-502 - PubMed
  17. Curr Opin Neurobiol. 2014 Oct;28:66-71 - PubMed
  18. Cognition. 1984 Mar;16(2):129-219 - PubMed
  19. J Exp Biol. 2010 Aug 1;213(Pt 15):2665-72 - PubMed
  20. Dev Cogn Neurosci. 2012 Feb 15;2 Suppl 1:S139-51 - PubMed
  21. Anat Rec A Discov Mol Cell Evol Biol. 2005 Nov;287(1):1142-52 - PubMed
  22. Anim Cogn. 2013 Sep;16(5):701-9 - PubMed
  23. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017 Feb;203(2):111-120 - PubMed
  24. Curr Biol. 2018 Feb 19;28(4):574-579.e3 - PubMed
  25. J Comp Psychol. 1999 Dec;113(4):347-64 - PubMed
  26. Cereb Cortex. 1997 Oct-Nov;7(7):635-46 - PubMed
  27. Anat Rec A Discov Mol Cell Evol Biol. 2004 Dec;281(2):1247-55 - PubMed
  28. Nature. 2005 Feb 24;433(7028):873-6 - PubMed
  29. Proc Biol Sci. 2015 Jul 22;282(1811): - PubMed
  30. J Exp Psychol Anim Behav Process. 1996 Apr;22(2):164-74 - PubMed
  31. J Magn Reson Imaging. 2001 Apr;13(4):534-46 - PubMed
  32. Biol Lett. 2011 Feb 23;7(1):60-2 - PubMed
  33. Proc Biol Sci. 2020 Apr 8;287(1924):20192944 - PubMed
  34. J Comp Psychol. 1993 Sep;107(3):301-12 - PubMed
  35. J Exp Biol. 2012 May 1;215(Pt 9):1442-7 - PubMed
  36. Science. 1977 Feb 4;195(4277):501-3 - PubMed
  37. Nature. 2005 Jun 30;435(7046):1177 - PubMed
  38. Science. 1975 Aug 22;189(4203):650-2 - PubMed
  39. Anim Cogn. 2015 Mar;18(2):551-60 - PubMed
  40. Anim Cogn. 2004 Oct;7(4):231-8 - PubMed
  41. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015 Feb;201(2):249-59 - PubMed
  42. Dokl Akad Nauk SSSR. 1972 Jan 11;202(2):490-3 - PubMed
  43. Anim Cogn. 2004 Oct;7(4):224-30 - PubMed
  44. J Comp Psychol. 1984 Mar;98(1):10-28 - PubMed
  45. Behav Processes. 2008 Feb;77(2):243-68 - PubMed
  46. Nat Neurosci. 2000 Jul;3(7):701-7 - PubMed
  47. Elife. 2018 May 11;7: - PubMed
  48. Neurosci Biobehav Rev. 2016 Jan;60:90-7 - PubMed
  49. Brain Behav Evol. 1985;26(3-4):176-84 - PubMed
  50. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Jun;199(6):441-50 - PubMed
  51. Front Neuroanat. 2014 Aug 11;8:77 - PubMed
  52. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Feb;197(2):141-51 - PubMed
  53. Vision Res. 1996 Sep;36(17):2747-57 - PubMed
  54. Curr Zool. 2019 Feb;65(1):107-120 - PubMed
  55. Vision Res. 2006 Oct;46(20):3326-30 - PubMed
  56. Neuroimage. 2008 Jul 1;41(3):1168-76 - PubMed
  57. J Acoust Soc Am. 1995 Aug;98(2 Pt 1):722-33 - PubMed
  58. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Jun;199(6):491-507 - PubMed
  59. Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7255-60 - PubMed
  60. Brain Struct Funct. 2015 Jul;220(4):2303-14 - PubMed
  61. Nature. 2006 Jun 22;441(7096):E9-10; discussion E11 - PubMed
  62. Science. 2015 Jul 3;349(6243):74-7 - PubMed
  63. Annu Rev Neurosci. 1988;11:137-56 - PubMed
  64. Trends Cogn Sci. 2010 Nov;14(11):477-81 - PubMed
  65. Percept Mot Skills. 1994 Dec;79(3 Pt 1):1307-15 - PubMed
  66. Brain Cogn. 2004 Nov;56(2):129-40 - PubMed
  67. Front Hum Neurosci. 2009 Nov 09;3:31 - PubMed
  68. J Exp Anal Behav. 1973 May;19(3):379-94 - PubMed
  69. Brain Res Bull. 2008 Mar 18;75(2-4):384-90 - PubMed
  70. J Comp Psychol. 2013 Nov;127(4):412-27 - PubMed
  71. J Acoust Soc Am. 2014 Oct;136(4):1990-2002 - PubMed
  72. J Comp Psychol. 2009 Feb;123(1):45-55 - PubMed
  73. Neuroimage. 2010 Sep;52(3):1059-69 - PubMed
  74. Brain Behav Evol. 2003;61(2):102-12 - PubMed
  75. Anim Cogn. 2011 Sep;14(5):695-706 - PubMed
  76. J Acoust Soc Am. 2002 Aug;112(2):728-39 - PubMed
  77. Cortex. 2013 Jan;49(1):312-26 - PubMed
  78. Psychon Bull Rev. 2008 Apr;15(2):364-71 - PubMed
  79. Neuron. 2011 Nov 17;72(4):665-78 - PubMed
  80. J Acoust Soc Am. 2006 May;119(5 Pt 1):3181-92 - PubMed
  81. Brain Behav Evol. 2007;70(2):115-24 - PubMed
  82. Psychon Bull Rev. 2016 Dec;23(6):1647-1659 - PubMed
  83. J Exp Biol. 1997 May;200(Pt 9):1309-16 - PubMed
  84. Front Neuroanat. 2017 Dec 12;11:118 - PubMed
  85. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Oct;191(10):903-8 - PubMed
  86. Prog Retin Eye Res. 2000 Nov;19(6):711-77 - PubMed
  87. J Comp Neurol. 2019 Jul 1;527(10):1689-1705 - PubMed
  88. Curr Biol. 2009 May 26;19(10):827-30 - PubMed
  89. Vet Ophthalmol. 2010 Sep;13 Suppl:63-71 - PubMed
  90. Brain Struct Funct. 2018 May;223(4):1697-1711 - PubMed
  91. BMJ. 1999 Sep 11;319(7211):715 - PubMed
  92. J Comp Neurol. 2016 Dec 15;524(18):3865-3895 - PubMed
  93. Curr Biol. 2011 Apr 26;21(8):687-91 - PubMed
  94. PLoS One. 2019 Dec 16;14(12):e0226206 - PubMed
  95. Behav Processes. 2000 Aug 17;50(2-3):79-94 - PubMed
  96. J Comp Neurol. 2018 Feb 1;526(2):216-228 - PubMed
  97. Curr Biol. 2020 Aug 3;30(15):3024-3030.e4 - PubMed
  98. Nat Ecol Evol. 2020 Jun;4(6):788-793 - PubMed
  99. Biol Rev Camb Philos Soc. 2006 May;81(2):293-338 - PubMed
  100. Am J Psychol. 2004 Spring;117(1):1-18 - PubMed
  101. Nat Commun. 2012;3:980 - PubMed
  102. Brain Behav Evol. 1998;51(4):230-8 - PubMed
  103. Am J Psychol. 1994 Spring;107(1):95-115 - PubMed
  104. J Acoust Soc Am. 2009 Jul;126(1):476-83 - PubMed
  105. Nature. 2003 Aug 7;424(6949):667-9 - PubMed
  106. Curr Biol. 2013 Sep 9;23(17):R764-73 - PubMed
  107. J Comp Neurol. 2016 Jun 15;524(9):1957-75 - PubMed
  108. Philos Trans R Soc Lond B Biol Sci. 1985 Feb 13;308(1135):21-35 - PubMed
  109. J Comp Neurol. 2017 Jun 15;525(9):2109-2132 - PubMed
  110. J Comp Physiol A. 1992 Jan;170(1):41-7 - PubMed
  111. Proc Biol Sci. 2013 Aug 07;280(1768):20131726 - PubMed
  112. PLoS Biol. 2007 May;5(5):e139 - PubMed
  113. Proc Natl Acad Sci U S A. 2006 May 23;103(21):8293-7 - PubMed
  114. Neuron. 2007 Oct 25;56(2):201-8 - PubMed
  115. Front Neuroanat. 2015 Jul 23;9:98 - PubMed
  116. J Comp Physiol A. 1986 May;158(5):705-11 - PubMed
  117. Intelligence. 2019 Jul-Aug;75:48-58 - PubMed
  118. Brain Res Bull. 2008 Mar 18;75(2-4):450-9 - PubMed
  119. J Comp Neurol. 1998 Sep 21;399(2):210-28 - PubMed
  120. Ann N Y Acad Sci. 1977 Sep 30;299:146-60 - PubMed

Publication Types