Display options
Share it on

Clocks Sleep. 2018 Oct 20;1(1):50-64. doi: 10.3390/clockssleep1010006. eCollection 2019 Mar.

Scale-Free Dynamics of the Mouse Wakefulness and Sleep Electroencephalogram Quantified Using Wavelet-Leaders.

Clocks & sleep

Jean-Marc Lina, Emma Kate O'Callaghan, Valérie Mongrain

Affiliations

  1. Research Centre and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (CIUSSS-NIM), 5400 Gouin West blvd., Montreal, QC H4J 1C5, Canada.
  2. Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montreal, QC H3C 3J7, Canada.
  3. École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montreal, QC H3C 1K3, Canada.
  4. Department of Neuroscience, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montreal, QC H3C 3J7, Canada.

PMID: 33089154 PMCID: PMC7509677 DOI: 10.3390/clockssleep1010006

Abstract

Scale-free analysis of brain activity reveals a complexity of synchronous neuronal firing which is different from that assessed using classic rhythmic quantifications such as spectral analysis of the electroencephalogram (EEG). In humans, scale-free activity of the EEG depends on the behavioral state and reflects cognitive processes. We aimed to verify if fractal patterns of the mouse EEG also show variations with behavioral states and topography, and to identify molecular determinants of brain scale-free activity using the 'multifractal formalism' (Wavelet-Leaders). We found that scale-free activity was more anti-persistent (i.e., more different between time scales) during wakefulness, less anti-persistent (i.e., less different between time scales) during non-rapid eye movement sleep, and generally intermediate during rapid eye movement sleep. The scale-invariance of the frontal/motor cerebral cortex was generally more anti-persistent than that of the posterior cortex, and scale-invariance during wakefulness was strongly modulated by time of day and the absence of the synaptic protein Neuroligin-1. Our results expose that the complexity of the scale-free pattern of organized neuronal firing depends on behavioral state in mice, and that patterns expressed during wakefulness are modulated by one synaptic component.

© 2018 by the authors.

Keywords: Neuroligin-1; mice; multifractal formalism; sleep regulation; time-of-day effect; vigilance state identification

Conflict of interest statement

Conflicts of InterestThe authors declare no conflict of interest.

References

  1. J Appl Physiol (1985). 2002 Feb;92(2):852-62 - PubMed
  2. Nat Rev Neurosci. 2010 Feb;11(2):114-26 - PubMed
  3. PLoS Biol. 2009 Jun 9;7(6):e1000125 - PubMed
  4. Sleep. 2016 Mar 01;39(3):613-24 - PubMed
  5. Neuron. 2007 Jun 21;54(6):919-31 - PubMed
  6. Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:2010-2013 - PubMed
  7. Clin Neurophysiol. 2001 Oct;112(10):1901-11 - PubMed
  8. PLoS One. 2013 Jul 03;8(7):e68360 - PubMed
  9. Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):725-30 - PubMed
  10. J Neurosci. 2013 Sep 25;33(39):15545-54 - PubMed
  11. J Neurosci. 2008 Aug 6;28(32):7968-78 - PubMed
  12. Diabetes. 2015 Apr;64(4):1073-80 - PubMed
  13. J Neurosci. 2010 Feb 10;30(6):2115-29 - PubMed
  14. Neuron. 2013 Oct 30;80(3):751-64 - PubMed
  15. Nat Neurosci. 2012 Dec;15(12):1667-74 - PubMed
  16. Brain Struct Funct. 2015 Jan;220(1):47-58 - PubMed
  17. Neuron. 2010 May 13;66(3):353-69 - PubMed
  18. Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9974-9 - PubMed
  19. Proc Natl Acad Sci U S A. 2016 May 10;113(19):E2730-9 - PubMed
  20. PLoS One. 2007 Sep 12;2(9):e867 - PubMed
  21. Dev Biol. 2007 Jul 1;307(1):79-91 - PubMed
  22. Biophys J. 2010 May 19;98(9):1733-41 - PubMed
  23. Nat Neurosci. 2011 Jan;14(1):100-7 - PubMed
  24. Brain Topogr. 2016 Jan;29(1):13-26 - PubMed
  25. Neuron. 2006 Sep 21;51(6):741-54 - PubMed
  26. J Neurosci. 2001 Feb 15;21(4):1370-7 - PubMed
  27. Nature. 2014 Jun 5;510(7503):143-7 - PubMed
  28. Science. 1993 Oct 29;262(5134):679-85 - PubMed
  29. J Neurosci. 2013 Aug 28;33(35):14184-92 - PubMed
  30. Learn Mem. 2015 Aug 18;22(9):426-37 - PubMed
  31. Nature. 2013 Jan 17;493(7432):371-7 - PubMed
  32. J Neurosci. 2011 Aug 24;31(34):12104-17 - PubMed
  33. Conf Proc IEEE Eng Med Biol Soc. 2005;2005:4526-9 - PubMed
  34. Nature. 2008 Oct 16;455(7215):903-11 - PubMed
  35. Neuron. 2015 Sep 23;87(6):1143-1161 - PubMed
  36. J Neurosci. 2013 Oct 30;33(44):17363-72 - PubMed
  37. Neuron. 2012 Oct 18;76(2):396-409 - PubMed
  38. J Neurosci Methods. 2009 Dec 15;185(1):116-24 - PubMed
  39. Transl Psychiatry. 2014 Jan 21;4:e347 - PubMed
  40. J Neurosci. 2014 Mar 26;34(13):4708-27 - PubMed
  41. Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9087-92 - PubMed

Publication Types