Display options
Share it on

Stem Cells Int. 2020 Sep 30;2020:8894449. doi: 10.1155/2020/8894449. eCollection 2020.

Isolation and Characterization of Multipotent Canine Urine-Derived Stem Cells.

Stem cells international

Yan Xu, Tao Zhang, Yang Chen, Qiang Shi, Muzhi Li, Tian Qin, Jianzhong Hu, Hongbin Lu, Jun Liu, Can Chen

Affiliations

  1. Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008.
  2. Hunan Engineering Research Center of Sports and Health, Changsha, China 410008.
  3. Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008.
  4. Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008.
  5. Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008.
  6. Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou No.1 People's Hospital, Southern Medical University, Chenzhou, China 423000.
  7. Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China 410008.

PMID: 33061993 PMCID: PMC7545436 DOI: 10.1155/2020/8894449

Abstract

Current cell-based therapies on musculoskeletal tissue regeneration were mostly determined in rodent models. However, a direct translation of those promising cell-based therapies to humans exists a significant hurdle. For solving this problem, canine has been developed as a new large animal model to bridge the gap from rodents to humans. In this study, we reported the isolation and characterization of urine-derived stem cells (USCs) from mature healthy beagle dogs. The isolated cells showed fibroblast-like morphology and had good clonogenicity and proliferation. Meanwhile, these cells positively expressed multiple markers of MSCs (CD29, CD44, CD90, and CD73), but negatively expressed for hematopoietic antigens (CD11b, CD34, and CD45). Additionally, after induction culturing, the isolated cells can be differentiated into osteogenic, adipogenic, chondrogenic, and tenogenic lineages. The successful isolation and verification of USCs from canine were useful for studying cell-based therapies and developing new treatments for musculoskeletal injuries using the preclinical canine model.

Copyright © 2020 Yan Xu et al.

Conflict of interest statement

The authors declare no competing financial interests.

References

  1. J Bone Joint Surg Am. 1998 Dec;80(12):1745-57 - PubMed
  2. J Korean Med Sci. 2015 Dec;30(12):1764-76 - PubMed
  3. J Tissue Eng Regen Med. 2019 Sep;13(9):1738-1755 - PubMed
  4. Genes Dev. 1994 May 15;8(10):1224-34 - PubMed
  5. Vet J. 2007 Mar;173(2):373-8 - PubMed
  6. Cell Prolif. 2017 Dec;50(6): - PubMed
  7. Nat Rev Drug Discov. 2008 Jun;7(6):489-503 - PubMed
  8. Connect Tissue Res. 2016 Nov;57(6):428-442 - PubMed
  9. Cytotechnology. 2017 Oct;69(5):751-763 - PubMed
  10. J Biosci Bioeng. 2005 Oct;100(4):418-22 - PubMed
  11. Lancet. 1984 Mar 3;1(8375):472-6 - PubMed
  12. Cell Tissue Res. 2014 May;356(2):391-403 - PubMed
  13. J Biol Chem. 2001 Oct 12;276(41):37731-4 - PubMed
  14. J Bone Joint Surg Am. 1998 Jul;80(7):985-96 - PubMed
  15. Stem Cells. 2016 Jul;34(7):1709-29 - PubMed
  16. Bone. 1992;13(1):81-8 - PubMed
  17. Life Sci. 2020 Oct 1;258:118143 - PubMed
  18. Stem Cell Res Ther. 2017 Oct 3;8(1):218 - PubMed
  19. Stem Cells Dev. 2010 Mar;19(3):395-402 - PubMed
  20. Int Orthop. 2013 Dec;37(12):2491-8 - PubMed
  21. Blood. 2009 Nov 12;114(20):4327-36 - PubMed
  22. Sci China Life Sci. 2020 May;63(5):712-723 - PubMed
  23. Cells. 2020 Feb 28;9(3): - PubMed
  24. J Biomed Mater Res A. 2020 Mar;108(3):394-411 - PubMed
  25. Arthroscopy. 2006 Jul;22(7):700-9 - PubMed
  26. Tissue Eng Part A. 2014 Jul;20(13-14):1794-806 - PubMed
  27. PLoS One. 2018 Aug 23;13(8):e0202922 - PubMed
  28. Curr Stem Cell Res Ther. 2016;11(6):453-474 - PubMed
  29. Cell Prolif. 2016 Apr;49(2):154-62 - PubMed
  30. Stem Cells Int. 2018 Dec 13;2018:7131532 - PubMed
  31. Arch Orthop Trauma Surg. 1994;113(6):312-7 - PubMed
  32. Stem Cells Int. 2018 Apr 17;2018:4686259 - PubMed
  33. Transplantation. 1970 Mar;9(3):240-6 - PubMed
  34. Hum Gene Ther. 2011 Jan;22(1):3-17 - PubMed
  35. J Orthop Res. 2019 Apr;37(4):887-897 - PubMed
  36. Annu Rev Biochem. 2008;77:289-312 - PubMed
  37. Cytotherapy. 2006;8(4):315-7 - PubMed
  38. J Orthop Res. 2020 Mar 21;: - PubMed
  39. Talanta. 2015 Jan;132:676-9 - PubMed
  40. J Transl Med. 2015 Jun 24;13:200 - PubMed
  41. Stem Cell Res Ther. 2013 Mar 28;4(2):23 - PubMed
  42. J Orthop Res. 1988;6(2):188-95 - PubMed
  43. Int J Mol Med. 2020 Sep;46(3):1029-1038 - PubMed
  44. PLoS One. 2015 May 13;10(5):e0125253 - PubMed
  45. J Bone Joint Surg Am. 2012 Apr 18;94(8):701-12 - PubMed
  46. Osteoarthritis Cartilage. 2014 Jul;22(7):941-50 - PubMed
  47. Stem Cells Int. 2017;2017:4378947 - PubMed
  48. Sci Transl Med. 2019 Oct 30;11(516): - PubMed
  49. Genet Mol Biol. 2020 Mar 02;43(1):e20190275 - PubMed
  50. Dev Biol. 2006 Oct 1;298(1):234-47 - PubMed
  51. Front Vet Sci. 2016 Sep 09;3:61 - PubMed
  52. Biomed Res Int. 2016;2016:4702674 - PubMed
  53. J Orthop Res. 2015 Aug;33(8):1171-9 - PubMed
  54. Tissue Eng Part B Rev. 2018 Oct;24(5):373-391 - PubMed
  55. Stem Cells. 2013 Sep;31(9):1840-56 - PubMed
  56. PLoS One. 2016 Dec 1;11(12):e0167442 - PubMed
  57. BMC Cell Biol. 2017 Feb 18;18(1):13 - PubMed
  58. Cell Tissue Res. 2014 May;356(2):287-98 - PubMed

Publication Types