Display options
Share it on

Synapse. 2021 Jun;75(6):e22193. doi: 10.1002/syn.22193. Epub 2020 Nov 22.

The C-terminal fragment of the heavy chain of the tetanus toxin (Hc-TeTx) improves motor activity and neuronal morphology in the limbic system of aged mice.

Synapse (New York, N.Y.)

Ruben Vazquez-Roque, Mariana Pacheco-Flores, Julio Cesar Penagos-Corzo, Gonzalo Flores, José Aguilera, Samuel Treviño, Jorge Guevara, Alfonso Diaz, Berenice Venegas

Affiliations

  1. Neuropsychiatry Laboratory, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México.
  2. Department of Psychology, Universidad De Las Américas Puebla, Puebla, México.
  3. Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
  4. Networked Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
  5. Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.
  6. Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
  7. Faculty of Biological Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, México.

PMID: 33141999 DOI: 10.1002/syn.22193

Abstract

In the aging process, the brain presents biochemical and morphological alterations. The neurons of the limbic system show reduced size dendrites, in addition to the loss of dendritic spines. These disturbances trigger a decrease in motor and cognitive function. Likewise, it is reported that during aging, in the brain, there is a significant decrease in neurotrophic factors, which are essential in promoting the survival and plasticity of neurons. The carboxyl-terminal fragment of the heavy chain of the tetanus toxin (Hc-TeTx) acts similarly to neurotrophic factors, inducing neuroprotection in different models of neuronal damage. The aim here, was to evaluate the effect of Hc-TeTx on the motor processes of elderly mice (18 months old), and its impact on the dendritic morphology and density of dendritic spines of neurons in the limbic system. The morphological analysis in the dendrites was evaluated employing Golgi-Cox staining. Hc-TeTx was administered (0.5 mg/kg) intraperitoneally for three days in 18-month-old mice. Locomotor activity was evaluated in a novel environment 30 days after the last administration of Hc-TeTx. Mice treated with Hc-TeTx showed significant changes in their motor behavior, and an increased dendritic spine density of pyramidal neurons in layers 3 and 5 of the prefrontal cortex in the hippocampus, and medium spiny neurons of the nucleus accumbens (NAcc). In conclusion, the Hc-TeTx improves the plasticity of the brain regions of the limbic system of aged mice. Therefore, it is proposed as a pharmacological alternative to prevent or delay brain damage during aging.

© 2020 Wiley Periodicals, Inc.

Keywords: carboxil-terminal fragment of heavy chain of tetanus toxin; dendritic spines; golgi-cox staining; locomotor activity; nucleus accumbens

References

  1. Alquicer, G., Silva-Gómez, A. B., Peralta, F., & Flores, G. (2004). Neonatal ventral hippocampus lesion alters the dopamine content in the limbic regions in postpubertal rats. International Journal of Developmental Neuroscience, 22(2), 103-111. https://doi.org/10.1016/j.ijdevneu.2003.12.003 - PubMed
  2. Binz, T., & Rummel, A. (2009). Cell entry strategy of clostridial neurotoxins. Journal of Neurochemistry, 109(6), 1584-1595. https://doi.org/10.1111/j.1471-4159.2009.06093.x - PubMed
  3. Bizzini, B., Stoeckel, K., & Schwab, M. (1977). An antigenic polypeptide fragment isolated from tetanus toxin: Chemical characterization, binding to gangliosides and retrograde axonal transport in various neuron systems. Journal of Neurochemistry, 28(3), 529-542. https://doi.org/10.1111/j.1471-4159.1977.tb10423.x - PubMed
  4. Bomba, M., Granzotto, A., Castelli, V., Massetti, N., Silvestri, E., Canzoniero, L. M. T., Cimini, A., & Sensi, S. L. (2018). Exenatide exerts cognitive effects by modulating the BDNF-TrkB neurotrophic axis in adult mice. Neurobiology of Aging, 64, 33-43. https://doi.org/10.1016/j.neurobiolaging.2017.12.009 - PubMed
  5. Bringas, M. E., Morales-Medina, J. C., Flores-Vivaldo, Y., Negrete-Diaz, J. V., Aguilar-Alonso, P., León-Chávez, B. A., Lazcano-Ortiz, Z., Monroy, E., Rodríguez-Moreno, A., Quirion, R., & Flores, G. (2012). Clozapine administration reverses behavioral, neuronal, and nitric oxide disturbances in the neonatal ventral hippocampus rat. Neuropharmacology, 62(4), 1848-1857. https://doi.org/10.1016/j.neuropharm.2011.12.008 - PubMed
  6. Budni, J., Bellettini-Santos, T., Mina, F., Garcez, M. L., & Zugno, A. I. (2015). The involvement of BDNF, NGF and GDNF in aging and Alzheimer's disease. Aging and Disease, 6(5), 331-341. https://doi.org/10.14336/ad.2015.0825 - PubMed
  7. Capsoni, S., Giannotta, S., & Cattaneo, A. (2002). Nerve growth factor and galantamine ameliorate early signs of neurodegeneration in anti-nerve growth factor mice. Proceedings of the National Academy of Sciences, 99(19), 12432. https://doi.org/10.1073/pnas.192442999 - PubMed
  8. Carvajal-Flores, F. N., Díaz, A., Flores-Gómez, G. D., de la Cruz, F., & Flores, G. (2020). Phenylbutyrate ameliorates prefrontal cortex, hippocampus, and nucleus accumbens neural atrophy as well as synaptophysin and GFAP stress in aging mice. Synapse (New York, N. Y.), e22177, https://doi.org/10.1002/syn.22177 - PubMed
  9. Chaib-Oukadour, I., Gil, C., & Aguilera, J. (2004). The C-terminal domain of the heavy chain of tetanus toxin rescues cerebellar granule neurones from apoptotic death: Involvement of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. Journal of Neurochemistry, 90(5), 1227-1236. https://doi.org/10.1111/j.1471-4159.2004.02586.x - PubMed
  10. Chaib-Oukadour, I., Gil, C., Rodriguez-Alvarez, J., Ortega, A., & Aguilera, J. (2009). Tetanus toxin H(C) fragment reduces neuronal MPP+ toxicity. Molecular and Cellular Neurosciences, 41(3), 297-303. https://doi.org/10.1016/j.mcn.2009.03.006 - PubMed
  11. Daenen, E. W., Wolterink, G., & Van Ree, J. M. (2003). Hyperresponsiveness to phencyclidine in animals lesioned in the amygdala on day 7 of life. Implications for an animal model of schizophrenia. European Neuropsychopharmacology, 13(4), 273-279. https://doi.org/10.1016/s0924-977x(03)00029-4 - PubMed
  12. Dahan, L., Rampon, C., & Florian, C. (2020). Age-related memory decline, dysfunction of the hippocampus and therapeutic opportunities. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 102, 109943. https://doi.org/10.1016/j.pnpbp.2020.109943 - PubMed
  13. De Rosa, R., Garcia, A. A., Braschi, C., Capsoni, S., Maffei, L., Berardi, N., & Cattaneo, A. (2005). Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proceedings of the National Academy of Sciences USA, 102(10), 3811-3816. https://doi.org/10.1073/pnas.0500195102 - PubMed
  14. Deinhardt, K., Berninghausen, O., Willison, H. J., Hopkins, C. R., & Schiavo, G. (2006). Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1. Journal of Cell Biology, 174(3), 459-471. https://doi.org/10.1083/jcb.200508170 - PubMed
  15. Diaz, A., Treviño, S., Vázquez-Roque, R., Venegas, B., Espinosa, B., Flores, G., Fernández-G, J. M., Montaño, L. F., & Guevara, J. (2017). The aminoestrogen prolame increases recognition memory and hippocampal neuronal spine density in aged mice. Synapse (New York, N. Y.), 71(10), e21987. https://doi.org/10.1002/syn.21987 - PubMed
  16. Fernandez-Espejo, E., Armengol, J. A., Flores, J. A., Galan-Rodriguez, B., & Ramiro, S. (2005). Cells of the sympathoadrenal lineage: Biological properties as donor tissue for cell-replacement therapies for Parkinson's disease. Brain Research. Brain Research Reviews, 49(2), 343-354. https://doi.org/10.1016/j.brainresrev.2005.01.004 - PubMed
  17. Flores, G., Alquicer, G., Silva-Gomez, A. B., Zaldivar, G., Stewart, J., Quirion, R., & Srivastava, L. K. (2005). Alterations in dendritic morphology of prefrontal cortical and nucleus accumbens neurons in post-pubertal rats after neonatal excitotoxic lesions of the ventral hippocampus. Neuroscience, 133(2), 463-470. https://doi.org/10.1016/j.neuroscience.2005.02.021 - PubMed
  18. Francis, J. W., Bastia, E., Matthews, C. C., Parks, D. A., Schwarzschild, M. A., Brown, R. H. Jr, & Fishman, P. S. (2004). Tetanus toxin fragment C as a vector to enhance delivery of proteins to the CNS. Brain Research, 1011(1), 7-13. https://doi.org/10.1016/j.brainres.2004.03.007 - PubMed
  19. Gelfo, F., Mandolesi, L., Serra, L., Sorrentino, G., & Caltagirone, C. (2018). The neuroprotective effects of experience on cognitive functions: Evidence from animal studies on the neurobiological bases of brain reserve. Neuroscience, 370, 218-235. https://doi.org/10.1016/j.neuroscience.2017.07.065 - PubMed
  20. Getachew, B., Mendieta, L., Csoka, A. B., Aguilera, J., & Tizabi, Y. (2019). Antidepressant effects of C-Terminal domain of the heavy chain of tetanus toxin in a rat model of depression. Behavioral Brain Research, 370, 111968. https://doi.org/10.1016/j.bbr.2019.111968 - PubMed
  21. Getachew, B., & Tizabi, Y. (2019). Effects of C-terminal domain of the heavy chain of tetanus toxin on gut microbiota in a rat model of depression. Clinical Pharmacology and Translational Medicine, 3(2), 152-159. - PubMed
  22. Gibb, R., & Kolb, B. (1998). A method for vibratome sectioning of Golgi-Cox stained whole rat brain. Journal of Neuroscience Methods, 79(1), 1-4. https://doi.org/10.1016/S0165-0270(97)00163-5 - PubMed
  23. Gil, C., Chaib-Oukadour, I., & Aguilera, J. (2003). C-terminal fragment of tetanus toxin heavy chain activates Akt and MEK/ERK signalling pathways in a Trk receptor-dependent manner in cultured cortical neurons. The Biochemical Journal, 373(Pt 2), 613-620. https://doi.org/10.1042/bj20030333 - PubMed
  24. Gil, C., Chaib-Oukadour, I., Blasi, J., & Aguilera, J. (2001). HC fragment (C-terminal portion of the heavy chain) of tetanus toxin activates protein kinase C isoforms and phosphoproteins involved in signal transduction. The Biochemical Journal, 356(Pt 1), 97-103. https://doi.org/10.1042/0264-6021:3560097 - PubMed
  25. Grigoruţă, M., Martínez-Martínez, A., Dagda, R. Y., & Dagda, R. K. (2020). Psychological stress phenocopies brain mitochondrial dysfunction and motor deficits as observed in a parkinsonian rat model. Molecular Neurobiology, 57(4), 1781-1798. https://doi.org/10.1007/s12035-019-01838-9 - PubMed
  26. Harward, S. C., Hedrick, N. G., Hall, C. E., Parra-Bueno, P., Milner, T. A., Pan, E., Laviv, T., Hempstead, B. L., Yasuda, R., & McNamara, J. O. (2016). Autocrine BDNF-TrkB signalling within a single dendritic spine. Nature, 538(7623), 99-103. https://doi.org/10.1038/nature19766 - PubMed
  27. Henry, M., & Baudry, S. (2019). Age-related changes in leg proprioception: Implications for postural control. Journal of Neurophysiology, 122(2), 525-538. https://doi.org/10.1152/jn.00067.2019 - PubMed
  28. Hernando, S., Herran, E., Figueiro-Silva, J., Pedraz, J. L., Igartua, M., Carro, E., & Hernandez, R. M. (2018). Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson's disease. Molecular Neurobiology, 55(1), 145-155. https://doi.org/10.1007/s12035-017-0728-7 - PubMed
  29. Herrando-Grabulosa, M., Casas, C., & Aguilera, J. (2013). The C-terminal domain of tetanus toxin protects motoneurons against acute excitotoxic damage on spinal cord organotypic cultures. Journal of Neurochemistry, 124(1), 36-44. https://doi.org/10.1111/jnc.12062 - PubMed
  30. Isaev, N. K., Stelmashook, E. V., & Genrikhs, E. E. (2019). Neurogenesis and brain aging. Reviews in the Neurosciences, 30(6), 573-580. https://doi.org/10.1515/revneuro-2018-0084 - PubMed
  31. Islam, F., Mulsant, B. H., Voineskos, A. N., & Rajji, T. K. (2017). Brain-derived neurotrophic factor expression in individuals with Schizophrenia and healthy aging: Testing the accelerated aging hypothesis of Schizophrenia. Current Psychiatry Reports, 19(7), 36. https://doi.org/10.1007/s11920-017-0794-6 - PubMed
  32. Josephy-Hernandez, S., Pirvulescu, I., Maira, M., Aboulkassim, T., Wong, T. P., McKinney, R. A., & Saragovi, H. U. (2019). Pharmacological interrogation of TrkA-mediated mechanisms in hippocampal-dependent memory consolidation. PLoS ONE, 14(6), e0218036. https://doi.org/10.1371/journal.pone.0218036 - PubMed
  33. Jyothi, H. J., Vidyadhara, D. J., Mahadevan, A., Philip, M., Parmar, S. K., Manohari, S. G., Shankar, S. K., Raju, T. R., & Alladi, P. A. (2015). Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta. Neurobiology of Aging, 36(12), 3321-3333. https://doi.org/10.1016/j.neurobiolaging.2015.08.024 - PubMed
  34. Kandlur, A., Satyamoorthy, K., & Gangadharan, G. (2020). Oxidative stress in cognitive and epigenetic aging: A retrospective glance. Frontiers in Molecular Neuroscience, 13, https://doi.org/10.3389/fnmol.2020.00041 - PubMed
  35. Kissa, K., Mordelet, E., Soudais, C., Kremer, E. J., Demeneix, B. A., Brûlet, P., & Coen, L. (2002). In vivo neuronal tracing with GFP-TTC gene delivery. Molecular and Cellular Neurosciences, 20(4), 627-637. https://doi.org/10.1006/mcne.2002.1141 - PubMed
  36. Kumar, D., Sharma, A., & Sharma, L. (2020). A comprehensive review of Alzheimer's association with related proteins: Pathological role and therapeutic significance. Current Neuropharmacology, 18(8), 674-695. https://doi.org/10.2174/1570159x18666200203101828 - PubMed
  37. Lalli, G., Bohnert, S., Deinhardt, K., Verastegui, C., & Schiavo, G. (2003). The journey of tetanus and botulinum neurotoxins in neurons. Trends in Microbiology, 11(9), 431-437. https://doi.org/10.1016/s0966-842x(03)00210-5 - PubMed
  38. Manning, K. A., Erichsen, J. T., & Evinger, C. (1990). Retrograde transneuronal transport properties of fragment C of tetanus toxin. Neuroscience, 34(1), 251-263. https://doi.org/10.1016/0306-4522(90)90319-y - PubMed
  39. Mattson, M. P., & Arumugam, T. V. (2018). Hallmarks of brain aging: Adaptive and pathological modification by metabolic states. Cell Metabolism, 27(6), 1176-1199. https://doi.org/10.1016/j.cmet.2018.05.011 - PubMed
  40. Mendieta, L., Bautista, E., Sánchez, A., Guevara, J., Herrando-Grabulosa, M., Moran, J., Martínez, R., Aguilera, J., & Limón, I. D. (2012). The C-terminal domain of the heavy chain of tetanus toxin given by intramuscular injection causes neuroprotection and improves the motor behavior in rats treated with 6-hydroxydopamine. Neuroscience Research, 74(2), 156-167. https://doi.org/10.1016/j.neures.2012.08.006 - PubMed
  41. Mendieta, L., Granado, N., Aguilera, J., Tizabi, Y., & Moratalla, R. (2016). Fragment C domain of tetanus toxin mitigates methamphetamine neurotoxicity and its motor consequences in mice. International Journal of Neuropsychopharmacology, 19(8), https://doi.org/10.1093/ijnp/pyw021 - PubMed
  42. Mendieta, L., Venegas, B., Moreno, N., Patricio, A., Martinez, I., Aguilera, J., & Limon, I. D. (2009). The carboxyl-terminal domain of the heavy chain of tetanus toxin prevents dopaminergic degeneration and improves motor behavior in rats with striatal MPP(+)-lesions. Neuroscience Research, 65(1), 98-106. https://doi.org/10.1016/j.neures.2009.06.001 - PubMed
  43. Miranda, M., Morici, J. F., Zanoni, M. B., & Bekinschtein, P. (2019). Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Frontiers in Cellular Neuroscience, 13, 363. https://doi.org/10.3389/fncel.2019.00363 - PubMed
  44. Monroy, E., Diaz, A., Tendilla-Beltrán, H., de la Cruz, F., & Flores, G. (2020). Bexarotene treatment increases dendritic length in the nucleus accumbens without change in the locomotor activity and memory behaviors, in old mice. Journal of Chemical Neuroanatomy, 104, 101734. https://doi.org/10.1016/j.jchemneu.2019.101734 - PubMed
  45. Moreno-Galarza, N., Mendieta, L., Palafox-Sánchez, V., Herrando-Grabulosa, M., Gil, C., Limón, D. I., & Aguilera, J. (2018). Peripheral administration of tetanus toxin Hc fragment prevents MPP(+) toxicity in vivo. Neurotoxicity Research, 34(1), 47-61. https://doi.org/10.1007/s12640-017-9853-3 - PubMed
  46. Moreno-Igoa, M., Calvo, A. C., Ciriza, J., Munoz, M. J., Zaragoza, P., & Osta, R. (2012). Non-viral gene delivery of the GDNF, either alone or fused to the C-fragment of tetanus toxin protein, prolongs survival in a mouse ALS model. Restorative Neurology and Neuroscience, 30(1), 69-80. https://doi.org/10.3233/rnn-2011-0621 - PubMed
  47. Moreno-Martinez, L., de la Torre, M., Muñoz, M. J., Zaragoza, P., Aguilera, J., Calvo, A. C., & Osta, R. (2020). Neuroprotective fragment C of tetanus toxin modulates IL-6 in an ALS mouse model. Toxins (Basel), 12(5), 330. https://doi.org/10.3390/toxins12050330 - PubMed
  48. Moya-Alvarado, G., Gonzalez, A., Stuardo, N., & Bronfman, F. C. (2018). Brain-derived neurotrophic factor (BDNF) regulates Rab5-positive early endosomes in hippocampal neurons to induce dendritic branching. Frontiers in Cellular Neuroscience, 12, 493. https://doi.org/10.3389/fncel.2018.00493 - PubMed
  49. Nagahara, A. H., Merrill, D. A., Coppola, G., Tsukada, S., Schroeder, B. E., Shaked, G. M., Wang, L., Blesch, A., Kim, A., Conner, J. M., Rockenstein, E., Chao, M. V., Koo, E. H., Geschwind, D., Masliah, E., Chiba, A. A., & Tuszynski, M. H. (2009). Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nature Medicine, 15(3), 331-337. https://doi.org/10.1038/nm.1912 - PubMed
  50. Numakawa, T., Odaka, H., & Adachi, N. (2018). Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. International Journal of Molecular Sciences, 19(11), 3650. https://doi.org/10.3390/ijms19113650 - PubMed
  51. Ovsepian, S. V., Bodeker, M., O'Leary, V. B., Lawrence, G. W., & Oliver Dolly, J. (2015). Internalization and retrograde axonal trafficking of tetanus toxin in motor neurons and trans-synaptic propagation at central synapses exceed those of its C-terminal-binding fragments. Brain Structure and Function, 220(3), 1825-1838. https://doi.org/10.1007/s00429-015-1004-0 - PubMed
  52. Patricio-Martínez, A., Mendieta, L., Martínez, I., Aguilera, J., & Limón, I. D. (2016). The recombinant C-terminal fragment of tetanus toxin protects against cholinotoxicity by intraseptal injection of β-amyloid peptide (25-35) in rats. Neuroscience, 315, 18-30. https://doi.org/10.1016/j.neuroscience.2015.11.066 - PubMed
  53. Paxinos, G., & Watson, C. (1998). The rat brain in stereotaxic coordinates (4th ed.). Academic Press. - PubMed
  54. Pellizzari, R., Rossetto, O., Schiavo, G., & Montecucco, C. (1999). Tetanus and botulinum neurotoxins: Mechanism of action and therapeutic uses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354(1381), 259-268. https://doi.org/10.1098/rstb.1999.0377 - PubMed
  55. Radenovic, L., Selakovic, V., Olivan, S., Calvo, A. C., Rando, A., Janac, B., & Osta, R. (2014). Neuroprotective efficiency of tetanus toxin C fragment in model of global cerebral ischemia in Mongolian gerbils. Brain Research Bulletin, 101, 37-44. https://doi.org/10.1016/j.brainresbull.2013.11.006 - PubMed
  56. Radin, D. P., Johnson, S., Purcell, R., & Lippa, A. S. (2018). Effects of chronic systemic low-impact ampakine treatment on neurotrophin expression in rat brain. Biomedicine & Pharmacotherapy, 105, 540-544. https://doi.org/10.1016/j.biopha.2018.06.008 - PubMed
  57. Roux, S., Colasante, C., Saint Cloment, C., Barbier, J., Curie, T., Girard, E., Molgó, J., & Brûlet, P. (2005). Internalization of a GFP-tetanus toxin C-terminal fragment fusion protein at mature mouse neuromuscular junctions. Molecular and Cellular Neurosciences, 30(4), 572-582. https://doi.org/10.1016/j.mcn.2005.05.008 - PubMed
  58. Sanabria-Castro, A., Alvarado-Echeverría, I., & Monge-Bonilla, C. (2017). Molecular pathogenesis of Alzheimer's disease: An update. Annals of Neurosciences, 24(1), 46-54. https://doi.org/10.1159/000464422 - PubMed
  59. Sanchez-Gonzalez, A., Mendieta, L., Palafox, V., Candalija, A., Luna, F., Aguilera, J., & Limon, I. D. (2014). The restorative effect of intramuscular injection of tetanus toxin C-fragment in hemiparkinsonian rats. Neuroscience Research, 84, 1-9. https://doi.org/10.1016/j.neures.2014.04.008 - PubMed
  60. Schiavo, G., Matteoli, M., & Montecucco, C. (2000). Neurotoxins affecting neuroexocytosis. Physiological Reviews, 80(2), 717-766. https://doi.org/10.1152/physrev.2000.80.2.717 - PubMed
  61. Sholl, D. A. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of Anatomy, 87(4), 387-406. - PubMed
  62. Skaper, S. D. (2012). The neurotrophin family of neurotrophic factors: An overview. In S. D. Skaper (Ed.), Neurotrophic factors: Methods and protocols (pp. 1-12). Humana Press. - PubMed
  63. Skaper, S. D. (2018). Neurotrophic factors: An overview. Methods in Molecular Biology, 1727, 1-17. https://doi.org/10.1007/978-1-4939-7571-6_1 - PubMed
  64. Tendilla-Beltrán, H., Antonio Vázquez-Roque, R., Judith Vázquez-Hernández, A., Garcés-Ramírez, L., & Flores, G. (2019). Exploring the dendritic spine pathology in a Schizophrenia-related neurodevelopmental animal model. Neuroscience, 396, 36-45. https://doi.org/10.1016/j.neuroscience.2018.11.006 - PubMed
  65. Torres-García, M. E., Solis, O., Patricio, A., Rodríguez-Moreno, A., Camacho-Abrego, I., Limón, I. D., & Flores, G. (2012). Dendritic morphology changes in neurons from the prefrontal cortex, hippocampus and nucleus accumbens in rats after lesion of the thalamic reticular nucleus. Neuroscience, 223, 429-438. https://doi.org/10.1016/j.neuroscience.2012.07.042 - PubMed
  66. Treviño, S., Vázquez-Roque, R. A., López-López, G., Perez-Cruz, C., Moran, C., Handal-Silva, A., González-Vergara, E., Flores, G., Guevara, J., & Díaz, A. (2017). Metabolic syndrome causes recognition impairments and reduced hippocampal neuronal plasticity in rats. Journal of Chemical Neuroanatomy, 82, 65-75. https://doi.org/10.1016/j.jchemneu.2017.02.007 - PubMed
  67. Trinchero, M. F., Buttner, K. A., Sulkes Cuevas, J. N., Temprana, S. G., Fontanet, P. A., Monzón-Salinas, M. C., Ledda, F., Paratcha, G., & Schinder, A. F. (2017). High plasticity of new granule cells in the aging Hippocampus. Cell Reports, 21(5), 1129-1139. https://doi.org/10.1016/j.celrep.2017.09.064 - PubMed
  68. Udina, C., Avtzi, S., Durduran, T., Holtzer, R., Rosso, A. L., Castellano-Tejedor, C., Perez, L.-M., Soto-Bagaria, L., & Inzitari, M. (2020). Functional near-infrared spectroscopy to study cerebral hemodynamics in older adults during cognitive and motor tasks: A review. Frontiers in Aging Neuroscience, 11. https://doi.org/10.3389/fnagi.2019.00367 - PubMed
  69. Vidal, B., Vazquez-Roque, R. A., Gnecco, D., Enriquez, R. G., Floran, B., Diaz, A., & Flores, G. (2017). Curcuma treatment prevents cognitive deficit and alteration of neuronal morphology in the limbic system of aging rats. Synapse (New York, N. Y.), 71(3), e21952. https://doi.org/10.1002/syn.21952 - PubMed
  70. von Bohlen und Halbach, O., Minichiello, L., & Unsicker, K. (2008). TrkB but not trkC receptors are necessary for postnatal maintenance of hippocampal spines. Neurobiology of Aging, 29(8), 1247-1255. https://doi.org/10.1016/j.neurobiolaging.2007.02.028 - PubMed
  71. Wang, H. Q., Gao, Z., Chen, M. Y., Wu, H. Q., Zhang, G. L., Zhan, S. Q., & Zhai, Y. F. (2016). Effects of recombinant human erythropoietin on brain-derived neurotrophic factor expression in different brain regions of aging rats. Nan Fang Yi Ke Da Xue Xue Bao, 37(4), 551-554. - PubMed
  72. Watanabe, Y., Matsuba, T., Nakanishi, M., Une, M., Hanajima, R., & Nakashima, K. (2018). Tetanus toxin fragments and Bcl-2 fusion proteins: Cytoprotection and retrograde axonal migration. BMC Biotechnology, 18(1), 39. https://doi.org/10.1186/s12896-018-0452-z - PubMed
  73. Wyss-Coray, T. (2016). Ageing, neurodegeneration and brain rejuvenation. Nature, 539(7628), 180-186. https://doi.org/10.1038/nature20411 - PubMed
  74. Xiong, J., Zhang, Z., Ma, Y., Li, Z., Zhou, F., Qiao, N. A., Liu, Q. I., & Liao, W. (2020). The effect of combined scalp acupuncture and cognitive training in patients with stroke on cognitive and motor functions. NeuroRehabilitation, 46, 75-82. https://doi.org/10.3233/NRE-192942 - PubMed
  75. Yeh, F. L., Dong, M., Yao, J., Tepp, W. H., Lin, G., Johnson, E. A., & Chapman, E. R. (2010). SV2 mediates entry of tetanus neurotoxin into central neurons. PLoS Pathogens, 6(11), e1001207. https://doi.org/10.1371/journal.ppat.1001207 - PubMed
  76. Youssef, S. A., Capucchio, M. T., Rofina, J. E., Chambers, J. K., Uchida, K., Nakayama, H., & Head, E. (2016). Pathology of the aging brain in domestic and laboratory animals, and animal models of human neurodegenerative diseases. Veterinary Pathology, 53(2), 327-348. https://doi.org/10.1177/0300985815623997 - PubMed

Publication Types

Grant support