Display options
Share it on

J Intensive Care. 2020 Oct 14;8:79. doi: 10.1186/s40560-020-00498-5. eCollection 2020.

Oxygen administration for postoperative surgical patients: a narrative review.

Journal of intensive care

Satoshi Suzuki

Affiliations

  1. Department of Intensive Care, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558 Japan.

PMID: 33072333 PMCID: PMC7556934 DOI: 10.1186/s40560-020-00498-5

Abstract

Most postoperative surgical patients routinely receive supplemental oxygen therapy to prevent the potential development of hypoxemia due to incomplete lung re-expansion, reduced chest wall, and diaphragmatic activity caused by surgical site pain, consequences of hemodynamic impairment, and residual effects of anesthetic drugs (most notably residual neuromuscular blockade), which may result in atelectasis, ventilation-perfusion mismatch, alveolar hypoventilation, and impaired upper airway patency. Additionally, the World Health Organization guidelines for reducing surgical site infection have recommended the perioperative administration of high-dose oxygen, including during the immediate postoperative period. However, supplemental oxygen and hyperoxemia also have harmful effects on the respiratory and cardiovascular systems, with several clinical studies having reported an association between high perioperative oxygen administration and worse clinical outcomes. Recently, the increased availability of new and short-acting anesthetic drugs, comprehensive pharmacological knowledge, postoperative multimodal analgesia, and new minimally invasive surgery options could result in lower incidences of postoperative hypoxemia. Moreover, recommendations promoting high oxygen administration to prevent surgical site infections have been challenged, considering the lack of scientific investigations, and have not been widely accepted. Given the potential harmful effects of hyperoxemia, routine postoperative oxygen administration might not be recommended. Recent clinical studies have indicated that a conservative approach to oxygen therapy, where oxygen administration is titrated to achieve slightly lower oxygen levels than usual, could be safely implemented and decrease acutely ill patients' susceptibility to hyperoxemia. Based on current evidence, appropriate monitoring, including peripheral oxygen saturation, and oxygen titration should be required during postoperative oxygen administration to avoid both hypoxemia and hyperoxemia. Future trials should therefore focus on determining the optimal oxygen target during postoperative care.

© The Author(s) 2020.

Keywords: Hyperoxemia; Hypoxemia; Oxygen therapy; Postoperative care; Surgical site infection

Conflict of interest statement

Competing interestsThe author declares no competing interests.

References

  1. Acta Anaesthesiol Scand. 2011 Jan;55(1):75-81 - PubMed
  2. Surgery. 1993 Jul;114(1):76-81 - PubMed
  3. Perioper Med (Lond). 2018 Jul 24;7:17 - PubMed
  4. Chest. 2004 Nov;126(5):1552-8 - PubMed
  5. J Clin Anesth. 2016 Dec;35:210-214 - PubMed
  6. Br J Anaesth. 2017 Jul 1;119(1):140-149 - PubMed
  7. BMJ. 2018 Oct 24;363:k4169 - PubMed
  8. Int J Cardiol. 2016 Jul 15;215:238-43 - PubMed
  9. J Clin Anesth. 2013 Dec;25(8):612-7 - PubMed
  10. Anesth Essays Res. 2012 Jan-Jun;6(1):34-7 - PubMed
  11. Anesth Analg. 2012 Oct;115(4):849-54 - PubMed
  12. Br J Anaesth. 2018 Jan;120(1):117-126 - PubMed
  13. JAMA. 2009 Oct 14;302(14):1543-50 - PubMed
  14. Eur Heart J. 2018 Jan 7;39(2):119-177 - PubMed
  15. Anesthesiology. 2019 Oct;131(4):765-768 - PubMed
  16. J Clin Monit Comput. 2018 Jun;32(3):379-389 - PubMed
  17. Br J Anaesth. 2014 Jul;113 Suppl 1:i74-i81 - PubMed
  18. Anesth Analg. 2015 Sep;121(3):709-15 - PubMed
  19. Circulation. 2013 Jan 29;127(4):e362-425 - PubMed
  20. JAMA. 2016 Oct 18;316(15):1583-1589 - PubMed
  21. Intensive Care Med. 2019 Dec;45(12):1802-1805 - PubMed
  22. Br J Anaesth. 1989 Dec;63(6):651-4 - PubMed
  23. J Appl Physiol (1985). 2007 May;102(5):2040-5 - PubMed
  24. Anaesth Intensive Care. 2019 Mar;47(2):175-182 - PubMed
  25. J Clin Med. 2020 Feb 28;9(3): - PubMed
  26. Br J Anaesth. 1992 May;68(5):471-3 - PubMed
  27. Anesth Analg. 2008 Jul;107(1):130-7 - PubMed
  28. Anesthesiology. 2017 May;126(5):771-773 - PubMed
  29. Am J Respir Crit Care Med. 2016 Jan 1;193(1):43-51 - PubMed
  30. Br J Anaesth. 2019 Mar;122(3):325-334 - PubMed
  31. Br J Anaesth. 2019 Mar;122(3):311-324 - PubMed
  32. Crit Care. 2018 Feb 25;22(1):45 - PubMed
  33. Lancet Infect Dis. 2016 Dec;16(12):e288-e303 - PubMed
  34. J Perianesth Nurs. 2013 Feb;28(1):21-5 - PubMed
  35. Eur J Anaesthesiol. 2011 Dec;28(12):842-8 - PubMed
  36. Can J Respir Ther. 2013 Winter;49(4):21-9 - PubMed
  37. Br J Anaesth. 2020 Jan;124(1):110-120 - PubMed
  38. Stroke. 2018 Mar;49(3):e46-e110 - PubMed
  39. Eur J Neurol. 2018 Mar;25(3):425-433 - PubMed
  40. Br J Anaesth. 2017 Dec 1;119(suppl_1):i44-i52 - PubMed
  41. Lancet Infect Dis. 2017 Mar;17(3):261-262 - PubMed
  42. N Engl J Med. 2020 Mar 12;382(11):989-998 - PubMed
  43. Crit Care. 2012 Oct 29;16(5):323 - PubMed
  44. Anesth Analg. 1985 Nov;64(11):1108-12 - PubMed
  45. Br J Anaesth. 2019 Mar;122(3):289-291 - PubMed
  46. Arch Surg. 1997 Sep;132(9):991-6 - PubMed
  47. Am J Surg. 2014 Nov;208(5):719-726 - PubMed
  48. Br J Anaesth. 1990 Nov;65(5):684-91 - PubMed
  49. Crit Care Med. 2014 Jun;42(6):1414-22 - PubMed
  50. Intensive Care Med. 2019 Nov;45(11):1661-1662 - PubMed
  51. Anesth Essays Res. 2014 Sep-Dec;8(3):367-71 - PubMed
  52. Can J Anaesth. 1988 Jul;35(4):332-7 - PubMed
  53. Anesthesiology. 1990 Nov;73(5):890-5 - PubMed

Publication Types