Display options
Share it on

Drug Dev Res. 2021 Apr;82(2):167-197. doi: 10.1002/ddr.21753. Epub 2020 Nov 02.

"Azole" as privileged heterocycle for targeting the inducible cyclooxygenase enzyme.

Drug development research

Parteek Prasher, Mousmee Sharma

Affiliations

  1. UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.
  2. Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, India.
  3. Department of Chemistry, Uttaranchal University, Arcadia Grant, Dehradun, India.

PMID: 33137216 DOI: 10.1002/ddr.21753

Abstract

An over-expression of COX-2 isoenzyme belonging to the Cyclooxygenase Enzyme Family triggers the overproduction of pro-inflammatory prostaglandins that instigate the development of chronic inflammation and related disorders. Hence, the rationally designed drugs for mitigating over-activity of COX-2 isoenzyme play a regulatory role toward the alleviation of the progression of these disorders. However, a selective COX-2 inhibition chemotherapy prompts several side effects that necessitate the identification of novel molecular scaffolds for deliberating state-of-the-art drug designing strategies. The heterocyclic "azole" scaffold, being polar and hydrophilic, possesses remarkable physicochemical advantages for designing physiologically active molecules capable of interacting with a wide range of biological components, including enzymes, peptides, and metabolites. The substituted derivatives of azole nuclei enable a comprehensive SAR analysis for the appraisal of bioactive profile of the deliberated molecules for obtaining the rationally designed compounds with prominent activities. The comprehensive SAR analysis readily prompted the identification of Y-shaped molecules and the eminence of bulkier group for COX-2 selective inhibition. This review presents an epigrammatic collation of the pharmacophore-profile of the chemotherapeutics based on azole motif for a selective targeting of the COX-2 isoenzyme.

© 2020 Wiley Periodicals LLC.

Keywords: arachidonic acid; azoles; inflammation

References

  1. Abdelgawad, M. A., Bakr, R. B., EL-Gendy, A. O., Kamel, G. M., Azouz, A. A., & Bukhari, S. N. A. (2017). Discovery of a COX-2 selective inhibitor hit with anti-inflammatory activity and gastric ulcer protective effect. Future Medicinal Chemistry, 9, 1899-1912. - PubMed
  2. Abdelgawad, M. A., Bakr, R. B., & Omar, H. A. (2017). Design, synthesis and biological evaluation of some novel benzothiazole/benzoxazole and/or benzimidazole derivatives incorporating a pyrazole scaffold as antiproliferative agents. Bioorganic Chemistry, 74, 82-90. - PubMed
  3. Abdellatif, K. R. A., Abdelgawad, M. A., Elshemy, H. A. H., & Alsayed, S. S. R. (2016). Design, synthesis and biological screening of new 4-thiazolidinone derivatives with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorganic Chemistry, 64, 1-12. - PubMed
  4. Abdellatif, K. R. A., & Fadaly, W. A. A. (2017). New 1,2-diaryl-4-substituted-benzylidene-5-4H-imidazolone derivatives: Design, synthesis and biological evaluation as potential anti-inflammatory and analgesic agents. Bioorganic Chemistry, 72, 123-129. - PubMed
  5. Abdellatif, K. R. A., Fadaly, W. A. A., Elshaier, Y. A. M. M., Ali, W. A. M., & Kamel, G. M. (2018). Non-acidic 1,3,4-trisubstituted-pyrazole derivatives as lonazolac analogs with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorganic Chemistry, 77, 568-578. - PubMed
  6. Abdellatif, K. R. A., Fadaly, W. A. A., Kamel, G. M., Elshaier, Y. A. M. M., & El-Magd, M. A. (2019). Design, synthesis, modeling studies and biological evaluation of thiazolidine derivatives containing pyrazole core as potential anti-diabetic PPAR-γ agonists and anti-inflammatory COX-2 selective inhibitors. Bioorganic Chemistry, 82, 86-99. - PubMed
  7. Agalave, S. G., Maujan, S. R., & Pore, V. S. (2011). Click chemistry: 1,2,3-triazoles as pharmacophores. Chemistry: An Asian Journal, 6, 2696-2718. - PubMed
  8. Alegaon, S. G., Hirpara, M. B., Alagawadi, K. R., Hullatti, K. K., & Kashniyal, K. (2014). Synthesis of novel pyrazole-thiadiazole hybrid as potential potent and selective cyclooxygenase-2 (COX-2) inhibitors. Bioorganic & Medicinal Chemistry Letters, 24, 5324-5329. - PubMed
  9. Al-Hourani, B. J., Al-Awaida, W., Matalka, K. Z., El-Barghouti, M. I., Alsoubani, F., & Wuest, F. (2016). Structure-activity relationship of novel series of 1,5-disubstituted tetrazoles as cyclooxygenase-2 inhibitors: Design, synthesis, bioassay screening and molecular docking studies. Bioorganic & Medicinal Chemistry Letters, 26, 4757-4762. - PubMed
  10. Al-Hourani, B. J., El-Barghouti, M. I., Al-Awaida, W., Mc Donald, R., Fattash, I. A., El Soubani, F., & Wuest, F. (2020). Biomolecular docking, synthesis, crystal structure, and bioassay studies of 1-[4-(2-chloroethoxy)phenyl]-5-[4-(methylsulfonyl)phenyl]-1H-tetrazole and 2-(4-(5-(4-(methylsulfonyl)phenyl)-1H-tetrazol-1-yl)phenoxy)ethyl nitrate. Journal of Molecular Structure, 1202, 127323. - PubMed
  11. Al-Hourani, B. J., El-Barghouti, M. I., Mc Donald, R., Al-Awaida, W., Sharma, S. K., & Wuest, F. (2016). Synthesis and crystal structure of N-[(dimethylamino)methylidene]-4-[1-(4-nitrophenyl)-1H-tetrazol-5-yl]-benzenesulfonamide: Molecular docking and bioassay studies as cyclooxygenase-2 inhibitor. Journal of Molecular Structure, 1119, 220-226. - PubMed
  12. Al-Hourani, B. J., Sharma, S. K., Kaur, J., & Wuest, F. (2015). Synthesis, bioassay studies, and molecular docking of novel 5-substituted 1H tetrazoles as cyclooxygenase-2 (COX-2) inhibitors. Medicinal Chemistry Research, 24, 78-85. - PubMed
  13. Al-Hourani, B. J., Sharma, S. K., Mane, J. Y., Tuszynski, J., Baracos, V., Kniess, T., Suresh, M., Pietzsch, J., & Wuest, F. (2011). Synthesis and evaluation of 1,5-diaryl-substituted tetrazoles as novel selective cyclooxygenase-2 (COX-2) inhibitors. Bioorganic & Medicinal Chemistry Letters, 21, 1823-1826. - PubMed
  14. Al-Hourani, B. J., Sharma, S. K., Suresh, M., & Wuest, F. (2012). Novel 5-substituted 1H-tetrazoles as cyclooxygenase-2 (COX-2) inhibitors. Bioorganic & Medicinal Chemistry Letters, 22, 2235-2238. - PubMed
  15. Almansa, C., Alfon, J., Arriba, A. F., Cavalcanti, F. L., Escamilla, I., Gomez, L. A., Miralles, A., Soliva, R., Bartroli, J., Carceller, E., Merlos, M., & Rafanell, J. C. (2003). Synthesis and structure-activity relationship of a new series of COX-2 selective inhibitors: 1,5-Diarylimidazoles. Journal of Medicinal Chemistry, 46, 3463-3475. - PubMed
  16. Amin, N. H., Mohammed, A. A., & Abdellatif, K. R. A. (2018). Novel 4-methylsulfonylphenyl derivatives as NSAIDS with preferential COX-2 inhibition. Future Medicinal Chemistry, 10, 53-70. - PubMed
  17. Angajala, K., Vianala, S., Macha, R., Raghavender, M., Thupurani, M. K., & Pathi, P. J. (2016). Synthesis, anti-inflammatory, bactericidal activities and docking studies of novel 1,2,3-triazoles derived from ibuprofen using click chemistry. Springerplus, 5, 423. - PubMed
  18. Assadieskandar, A., Amirhamzeh, A., Salehi, M., Ozadali, K., & Ostad, S. N. (2013). Synthesis, cyclooxygenase inhibitory effects, and molecular modeling study of 4-aryl-5-(4-(methylsulfonyl)phenyl)-2-alkylthio and −2-alkylsulfonyl-1H-imidazole derivatives. Bioorganic & Medicinal Chemistry, 21, 2355-2362. - PubMed
  19. Bakhle, Y. S. (2001). COX-2 and cancer: A new approach to an old problem. British Journal of Pharmacology, 134, 1137-1150. - PubMed
  20. Bakhle, Y. S., & Bottling, R. M. (1996). Cyclooxygenase-2 and its regulation in inflammation. Mediators of Inflammation, 5, 305-323. - PubMed
  21. Barghash, R. F., Geronikaki, A., & Abdou, W. M. (2018). Synthesis of a series of substituted Thiazole derivatives: New COX-2 enzyme inhibitors for colon cancer and inflammation treatment. ChemistrySelect, 3, 13329-13337. - PubMed
  22. Belal, A., & Abdelgawad, M. A. (2017). New benzothiazole/benzoxazole-pyrazole hybrids with potential as COX inhibitors: Design, synthesis and anticancer activity evaluation. Research on Chemical Intermediates, 43, 3859-3872. - PubMed
  23. Bhardwaj, A., Kaur, J., Wuest, M., & Wuest, F. (2017). In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nature Communications, 8, 1. - PubMed
  24. Bice, J. S., Jones, B. R., Chamberlain, G. R., & Baxter, G. F. (2016). Nitric oxide treatments as adjuncts to reperfusion in acute myocardial infarction: A systematic review of experimental and clinical studies. Basic Research in Cardiology, 111, 23. - PubMed
  25. Bonandi, E., Christodoulou, M. S., Fumagalli, G., Perdicchia, D., Rastelli, G., & Passarella, D. (2017). The 1,2,3-triazole ring as bioisostere in medicinal chemistry. Drug Discovery Today, 22, 1572-1581. - PubMed
  26. Britt, R. D., Locy, M. L., Tipple, T. E., Nelin, L. D., & Rogers, L. K. (2012). Lipopolysaccharide induced cyclooxygenase-2 expression in mouse transformed clara cells. Cellular Physiology and Biochemistry, 29, 213-222. - PubMed
  27. Cai, H., Huang, X., Xu, S., Shen, H., Zhang, P., Huang, Y., Jiang, J., Sun, Y., Jiang, B., Wu, X., Yao, H., & Xu, J. (2016). Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy. European Journal of Medicinal Chemistry, 108, 89-103. - PubMed
  28. Cannon, C. P., & Cannon, P. J. (2012). COX-2 inhibitors and cardiovascular risk. Science, 336, 1386-1387. - PubMed
  29. Carullo, G., Galligano, F., & Aiello, F. (2017). Structure-activity relationships for the synthesis of selective cyclooxygenase-2 inhibitors. An overview (2009-2016). Medicinal Chemistry Communications, 8, 492-500. - PubMed
  30. Chawla, P., Kalra, S., Kumar, R., Singh, R., & Saraf, S. K. (2019). Novel 2-(substituted phenyl Imino)-5-benzylidene-4-thiazolidinonesas possible non-ulcerogenic tri-action drug candidates: Synthesis, characterization, biological evaluation and docking studies. Medicinal Chemistry Research, 28, 340-359. - PubMed
  31. Cipollone, F., & Fazia, M. L. (2006). COX-2 and atherosclerosis. Journal of Cardiovascular Pharmacology, 47, S26-S36. - PubMed
  32. Dannenberg, A. J., Lippman, S. M., Mann, J. R., Subbaramaiah, K., & DuBois, R. N. (2005). Cyclooxygenase2- and epidermal growth factor receptor: Pharmacologic targets for chemoprevention. Journal of Clinical Oncology, 23, 254-266. - PubMed
  33. Dheer, D., Singh, V., & Shankar, R. (2017). Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorganic Chemistry, 71, 30-54. - PubMed
  34. El-Achkar, G. A., Jouni, M., Mrad, M. F., Hirz, T., Hachem, N. E., Khalaf, A., Hammoud, S., Kazan, H. F., Eid, A. A., Badran, B., Merhi, R. A., Hachem, A., Hamade, E., & Habib, A. (2015). Thiazole derivatives as inhibitors of cyclooxygenases in vitro and in vivo. European Journal of Pharmacology, 750, 66-73. - PubMed
  35. Eleftheriou, P., Geronikaki, A., Litina, D. H., Vicini, P., Filz, O., Filimonov, D., Poroikov, V., Chaudhery, S. S., Roy, K. K., & Saxena, A. K. (2012). Fragment-based design, docking, synthesis, biological evaluation and structure-activity relationships of 2-benzo/benzisothiazolimino-5-aryliden-4-thiazolidinones as cycloxygenase/lipoxygenase inhibitors. European Journal of Medicinal Chemistry, 47, 111-124. - PubMed
  36. Elie, J., Vercouillie, J., Arlicot, N., Lemaire, L., Bidault, R., Bodard, S., Hosselet, C., Deloye, J.-B., Chalon, S., Emond, P., Guilloteau, D., Buron, F., & Routier, S. (2019). Design of selective COX-2 inhibitors in the (aza)indazole series. Chemistry, in vitro studies, radiochemistry and evaluations in rats of a [18F] PET tracer. Journal of Enzyme Inhibition and Medicinal Chemistry, 34, 1-7. - PubMed
  37. Elsayed, M. S. A., Chang, S., & Cushman, M. (2018). Ligand-free, palladacycle-facilitated Suzuki coupling of hindered 2-arylbenzothiazole derivatives yields potent and selective COX-2 inhibitors. Organic & Biomolecular Chemistry, 16, 108-118. - PubMed
  38. Elzahhar, P. A., El Wahab, S. M. A., Elagawany, M., Daabees, H., Bilal, A. S. F., El-Yazbi, A. F., Eid, A. H., Alaaeddine, R., Hegazy, R. R., Allam, R. M., Helmy, M. W., Elgendy, B., Angeli, A., El-Hawash, S. A., & Supuran, C. T. (2020). Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting Cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases. European Journal of Medicinal Chemistry, 200, Article, 112439. - PubMed
  39. Fadaly, W. A. A., Elshaier, Y. A. M. M., Hassanein, E. H. M., & Abdellatif, K. R. A. (2020). New 1,2,4-triazole/pyrazole hybrids linked to oxime moiety as nitric oxide donor celecoxib analogs: Synthesis, cyclooxygenase inhibition anti-inflammatory, ulcerogenicity, anti-proliferative activities, apoptosis, molecular modeling and nitric oxide release studies. Bioorganic Chemistry, 98, 103752. https://doi.org/10.1016/j.bioorg.2020.103752. - PubMed
  40. Fiorucci, S., Santucci, L., & Distrutti, E. (2007). NSAIDs, coxibs, CINOD and H2S-releasing NSAIDs: What lies beyond the horizon. Digestive and Liver Disease, 39, 1043-1051. - PubMed
  41. Fitzgerald, G. A. (2004). Coxibs and cardiovascular disease. The New England Journal of Medicine, 351, 1709-1711. - PubMed
  42. Fitzpatrick, F. A. (2004). Cyclooxygenase enzymes: Regulation and function. Current Pharmaceutical Design, 10, 577-588. - PubMed
  43. Geronikaki, A. A., Lagunin, A. A., Litina, D. I. H., Eleftheriou, P. T., Filimonov, D. A., Poroikov, V. V., Alam, I., & Saxena, A. K. (2008). Computer-aided discovery of anti-inflammatory Thiazolidinones with dual cyclooxygenase/Lipoxygenase inhibition. Journal of Medicinal Chemistry, 51, 1601-1609. - PubMed
  44. Geusens, P. (2009). Naproxcinod, a new cyclooxygenase-inhibiting nitric oxide donator (CINOD). Expert Opinion on Biological Therapy, 9, 649-657. - PubMed
  45. Gierse, J. K., McDonald, J. J., Hauser, S. D., Rangwala, S. H., Koboldt, C. M., & Seibert, K. (1996). A single amino acid difference between cyclooxygenase-1 and 2reverses the selectivity of COX-2 specific inhibitors. The Journal of Biological Chemistry, 271, 15810-15814. - PubMed
  46. Goodsell, D. S. (2000). The molecular perspective: Cyclooxygenase-2. The Oncologist, 5, 169-171. - PubMed
  47. Goradel, N. H., Najafi, M., Salehi, E., Farhood, B., & Mortezaee, K. (2019). Cyclooxygenase in cancer: A review. Journal of Cellular Physiology, 234, 5683-5699. - PubMed
  48. Gorantla, V., Gundla, R., Jadav, S. S., Anugu, S. R., Chimakurthy, J., Rao, K., & Korupolu, R. (2017). New anti-inflammatory hybrid N- acyl Hydrazone-linked Isoxazole derivatives as COX-2 inhibitors:Rational design, synthesis and biological evaluation. ChemistrySelect, 2, 8091-8100. - PubMed
  49. Granstrom, E. (1984). The arachidonic acid cascade. Inflammation, 8, S15-S25. - PubMed
  50. Gudis, K., & Sakamoto, C. (2005). The role of cyclooxygenase in gastric mucosal protection. Digestive Diseases and Sciences, 50, S16-S23. - PubMed
  51. Guslandi, M. (2007). Gastrointestinal safety of NSAIDs versus COX-2 inhibitor. The Lancet, 369, P1344-P1345. - PubMed
  52. Haider, S., Alam, M. S., Hamid, H., Shafi, S., Dhulap, A., Hussain, F., Alam, P., Umar, S., Pasha, M. A. Q., Bano, S., Nazreen, S., Ali, Y., & Kharbanda, C. (2014). Synthesis of novel 1,2,3-triazole based benzoxazolinones: Their TNF-α based molecular docking with in-vivo anti-inflammatory, antinociceptive activities and ulcerogenic risk evaluation. European Journal of Medicinal Chemistry, 81, 204-217. - PubMed
  53. Hawkey, C. J., & Skelly, M. M. (2002). Gastrointestinal safety of selective COX-2 inhibitors. Current Pharmaceutical Design, 8, 1077-1089. - PubMed
  54. He, L.-Y., Zhang, S.-S., Peng, D.-X., Guan, L.-P., & Wang, S.-H. (2020). Synthesis and evaluations of selective Cox-2 inhibitory effects: Benzo[D]Thiazol analogs. Bioorganic & Medicinal Chemistry Letters, 30, 127376. - PubMed
  55. Hla, T., Bishop-Bailey, D., Liu, C. H., Schaefers, H. J., & Trifan, O. C. (1999). Cyclooxygenase-1 and 2-isoenzymes. The International Journal of Biochemistry & Cell Biology, 31, 551-557. - PubMed
  56. Hoogstraate, J., Andersson, L. I., Berge, O.-G., Jonzon, B., & Ojteg, G. (2003). COX-2 inhibiting nitric oxide donors (CINODs): A new paradigm in the treatment of pain and inflammation. Inflammopharmacology, 11, 423-428. - PubMed
  57. Huff, R. G., Bayram, E., Tan, H., Knutson, S. T., Knaggs, M. H., Richon, A. B., Santago, P., & Fetrow, J. S. (2005). Chemical and structural diversity in cyclooxygenase protein active sites. Chemistry & Biodiversity, 2, 1533-1552. - PubMed
  58. Jacob, J., & Manju, S. L. (2020). Identification and development of thiazole leads as COX-2/5-LOX inhibitors through in-vitro and in-vivo biological evaluation for anti-inflammatory activity. Bioorganic Chemistry, 100, 103882. - PubMed
  59. Jiang, B., Huang, X., Yao, H., Jiang, J., Wu, X., Jiang, S., Wang, Q., Lu, T., & Xu, J. (2014). Discovery of potential anti-inflammatory drugs: Diaryl-1,2,4-triazoles bearing N-hydroxyurea moiety as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase. Organic & Biomolecular Chemistry, 12, 2114-2127. - PubMed
  60. Jiang, B., Zeng, Y., Li, M.-J., Xu, J.-Y., Zhang, Y.-N., Wang, Q.-J., Sun, N.-Y., Lu, T., & Wu, X.-M. (2010). Design, synthesis, and biological evaluation of 1,5-Diaryl-1,2,4-triazole derivatives as selective Cyclooxygenase-2 inhibitors. Archiv der Pharmazie-Chemistry in Life Sciences, 343, 500-508. - PubMed
  61. Kage, K., Fujita, N., Oh-Hara, T., Ogata, E., Fujita, T., & Tsuruo, T. (1999). Basic fibroblast growth factor induces cyclooxygenase-2 expression in endothelial cells derived from bone. Biochemical and Biophysical Research Communications, 254(254), 259-263. - PubMed
  62. Kamble, R. D., Meshram, R. J., Hese, S. V., More, R. A., Kamble, S. S., Gacche, R. N., & Dawane, B. S. (2016). Synthesis and in silico investigation of thiazoles bearing pyrazoles derivatives as anti-inflammatory agents. Computational Biology and Chemistry, 61, 86-96. - PubMed
  63. Kaur, A., Pathak, D. P., Sharma, V., & Wakode, S. (2018a). Synthesis, biological evaluation and docking study of a new series of di-substituted benzoxazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Bioorganic & Medicinal Chemistry, 26, 891-902. - PubMed
  64. Kaur, A., Pathak, D. P., Sharma, V., & Wakode, S. (2018b). Synthesis, molecular docking, and pharmacological evaluation of N-(2-(3,5-dimethoxyphenyl)benzoxazole-5-yl)benzamide derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Archiv der Pharmazie-Chemistry in Life Sciences, 351, 1800008. - PubMed
  65. Khan, A., Diwan, A., Thabet, H. K., Imran, M., & Bakht, M. A. (2020). Discovery of novel Pyridazine-based Cyclooxygenase-2 inhibitors with a promising gastric safety profile. Molecules, 25, 2002. - PubMed
  66. Khanna, I. K., Weier, R. M., Yu, Y., Xu, X. D., Koszyk, F. J., Collins, P. W., Koboldt, C. M., Veenhuizen, A. W., Perkins, W. E., Casler, J. J., Masferrer, J. L., Zhang, Y. Y., Gregory, S. A., Seibert, K., & Isakson, P. C. (1997). 1,2-Diarylimidazoles as potent, cyclooxygenase-2 selective, and orally active antiinflammatory agents. Journal of Medicinal Chemistry, 40, 1634-1647. - PubMed
  67. Kharb, R., & Sharma, P. C. (2011). Yar, M.S. pharmacological significance of triazole scaffold. Journal of Enzyme Inhibition and Medicinal Chemistry, 26, 1-21. - PubMed
  68. Kodela, R., Chattopadhyay, M., Martinez-Velasquez, C. A., & Kashifi, K. (2015). NOSH-aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid has enhanced chemo-preventive properties compared to aspirin, is gastrointestinal safe with all the classic therapeutic indications. Biochemical Pharmacology, 98, 564-572. - PubMed
  69. Kumari, P., Mishra, V. S., Narayana, C., Khanna, A., Chakrabarty, A., & Sagar, R. (2020). Design and efficient synthesis of pyrazoline and isoxazole bridged indole C-glycoside hybrids as potential anticancer agents. Scientific Reports, 10, 6660. - PubMed
  70. Lamie, P. F., Philoppes, J. N., Azouz, A. A., & Safwat, N. M. (2017). Novel tetrazole and cyanamide derivatives as inhibitors of cyclooxygenase-2 enzyme: Design, synthesis, anti-inflammatory evaluation, ulcerogenic liability and docking study. Journal of Enzyme Inhibition and Medicinal Chemistry, 32, 805-820. - PubMed
  71. Leslie, C. C. (2004). Regulation of the specific release of arachidonic acid by cytosolic phospholipase A2. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 70, 373-376. - PubMed
  72. Linton, M. R. F., & Fazio, S. (2008). Cyclooxygenase products and atherosclerosis. Drug Discovery Today Therapeutic Strategies, 5, 25-36. - PubMed
  73. Liu, W., Reinmuth, N., Stoeltzing, O., Parikh, A. A., Tellez, C., Williams, S., Jung, Y. D., Fan, F., Takeda, A., Akagi, M., Bar-Eli, M., Gallick, G. E., & Ellis, L. M. (2003). Cyclooxygenase-2 is upregulated by interleukin-1β in human colorectal cancer cells via multiple signaling pathways. Cancer Research, 63, 3632-3636. - PubMed
  74. Lucido, M. J., Orlando, B. J., Vecchio, A. J., & Malkowski, M. G. (2016). Crystal structure of aspirin-acetylated human cyclooxygenase-2; insights into the formation of products with reversed stereochemistry. Biochemistry, 55, 1226-1238. - PubMed
  75. Maghraby, M. T. E., Ghadir, O. M. F. A., Moty, S. G. A., Ali, A. Y., & Salem, O. I. A. (2020). Novel class of benzimidazole-thiazole hybrids: The privileged scaffolds of potent anti-inflammatory activity with dual inhibition of cyclooxygenase and 15-lipoxygenase enzymes. Bioorganic & Medicinal Chemistry, 28, 115403. - PubMed
  76. Malkowski M.G. (2017) Encyclopedia of Inorganic and Bioinoorganic Chemistry, https://doi.org/10.1002/9781119951438.eibc0547.pub2. - PubMed
  77. Mamidyala, S. K., & Finn, M. G. (2010). In situ click chemistry: Probing the binding landscapes of biological molecules. Chemical Society Reviews, 39, 1252-1261. - PubMed
  78. Mancini, J. A., Riendeau, D., Falgueyret, J.-P., Vickers, P. J., & O'Neill, G. P. (1995). Arginine 120 of prostaglandin G/H synthase-1 is required for the inhibition by nonsteroidal anti-inflammatory drugs containing a carboxylic acid moiety. The Journal of Biological Chemistry, 270, 29372-29377. - PubMed
  79. Mantry, P., Shah, A., & Sundaram, U. (2003). Celecoxib associated esophagitis: Review of gastrointestinal side effects from cox-2 inhibitors. Journal of Clinical Gastroenterology, 37, 61-63. - PubMed
  80. Marnett, L. J. (2000). Cyclooxygenase mechanisms. Current Opinion in Chemical Biology, 4, 545-552. - PubMed
  81. Matthys, K. E., & Bult, H. (1997). Nitric oxide functions in atherosclerosis. Mediators of Inflammation, 6, 3-21. - PubMed
  82. May, G. R., Crook, P., Moore, P. K., & Page, C. P. (1991). The role of nitric oxide as an endogenous regulator of platelet and neutrophil activation within the pulmonary circulation of the rabbit. British Journal of Pharmacology, 102, 759-763. - PubMed
  83. Mboyne, U. R., Wada, M., Rieke, C. J., Tang, H. Y., Dewitt, D. L., & Smith, D. L. (2006). The 19 amino acid cassette of cyclooxygenase-2 mediates entry of the protein into the ER-associated degradation system. The Journal of Biological Chemistry, 281, 35770-35778. - PubMed
  84. Medeiros, R., Figueiredo, C. P., Pandolfo, P., Duarte, F. S., Prediger, R. D., Passos, G. F., & Calixto, J. B. (2010). The role of TNF-alpha signaling pathway on COX-2 upregulation and cognitive decline induced by beta-amyloid peptide. Behavioural Brain Research, 209, 165-173. - PubMed
  85. Melnikova, I. (2005). Future of COX-2 inhibitors. Nature Reviews. Drug Discovery, 4, 453-454. - PubMed
  86. Movahed, M. A., Daraei, B., Shahosseini, S., Esfahanizadeh, M., & Zarghi, A. (2019). Design, synthesis, and biological evaluation of new pyrazino[1,2-a ]benzimidazole derivatives as selective cyclooxygenase (COX-2) inhibitors. Archiv der Pharmazie-Chemistry in Life Sciences, 352, 1800265. - PubMed
  87. Murahari, M., Mahajan, V., Neeladri, S., Kumar, M. S., & Mayur, Y. C. (2019). Ligand based design and synthesis of pyrazole based derivatives as selective COX-2 inhibitors. Bioorganic Chemistry, 86, 583-597. - PubMed
  88. Muscara, M. N., & Wallace, J. L. (2006). COX-2 inhibiting nitric oxide donors (CINODs): Potential benefits on cardiovascular and renal function. Cardiovascular & Hematological Agents in Medicinal Chemistry, 4, 155-164. - PubMed
  89. Naaz, F., Pallavi, M. C. P., Shafi, S., Mulakayala, N., Yar, M. S., & Kumar, H. M. S. (2018). 1,2,3-triazole tethered Indole-3-glyoxamide derivatives as multiple inhibitors of 5-LOX, COX-2 & tubulin: Their anti-proliferative & anti-inflammatory activity. Bioorganic Chemistry, 81, 1-20. - PubMed
  90. Navidpour, L., Amini, M., Shafaroodi, H., Abdi, K., Ghahremani, M. H., Dehpour, A. R., & Shafiee, A. (2006). Design and synthesis of new water-soluble tetrazolide derivatives of celecoxib and rofecoxib as selective cyclooxygenase-2 (COX-2) inhibitors. Bioorganic & Medicinal Chemistry Letters, 16, 4483-4487. - PubMed
  91. Navidpour, L., Shadnia, H., Shafaroodi, H., Amini, M., Dehpour, A. R., & Shafiee, A. (2007). Design, synthesis, and biological evaluation of substituted 2-alkylthio-1,5-diarylimidazoles as selective COX-2 inhibitors. Bioorganic & Medicinal Chemistry, 15, 1976-1982. - PubMed
  92. Navidpour, L., Shafaroodi, H., Abdi, K., Amini, M., Ghahremani, M. H., Dehpour, A. R., & Shafiee, A. (2006). Design, synthesis, and biological evaluation of substituted 3-alkylthio-4,5-diaryl-4H-1,2,4-triazoles as selective COX-2 inhibitors. Bioorganic & Medicinal Chemistry, 14, 2507-2517. - PubMed
  93. Neha, Dwivedi, A. R., Kumar, R., & Kumar, V. (2018). Recent synthetic strategies for monocyclic azole nucleus and its role in drug discovery and development. Current Organic Synthesis, 15, 321-340. - PubMed
  94. Neochoritis, C. G., Zhao, T., & Domling, A. (2019). Tetrazoles by multicomponent reactions. Chemical Reviews, 119, 1970-2042. - PubMed
  95. Omar, Y. M., Abdu-Allah, H. H. M., & Moty, S. G. A. (2018). Synthesis, biological evaluation and docking study of 1,3,4-thiadiazole-thiazolidinone hybrids as anti-inflammatory agents with dual inhibition of COX-2 and 15-LOX. Bioorganic Chemistry, 80, 461-471. - PubMed
  96. Omar, Y. M., Moty, S. G. A., & Abdul-Allah, H. H. M. (2020). Further insight into the dual COX-2 and 15-LOX anti-inflammatory activity of 1,3,4-thiadiazole-thiazolidinone hybrids: The contribution of the substituents at 5th positions is size dependent. Bioorganic Chemistry, 97, 103657. - PubMed
  97. Paul-Clark, M., ELsheikh, W., Kirkby, N., Chan, M., Devchand, P., Agbor, T. A., Flannigan, K. L., Cheadle, C., Freydin, M., Lanaro, A., Mitchell, J. A., & Wallace, J. L. (2016). Profound chemopreventive effects of a hydrogen sulfide-releasing NSAID in APCMin/+ mouse model of intestinal tumorigenesis. PLoS One, 11, e0147289. - PubMed
  98. Perrone, M. G., Vitale, P., Panella, A., Ferorelli, S., Contino, M., Lavecchia, A., & Scilimati, A. (2016). Isoxazole-based-scaffold inhibitors targeting cyclooxygenases (COXs). ChemMedChem, 11, 1172-1187. - PubMed
  99. Prasher, P., Mudila, H., Sharma, M., & Khati, B. (2019). Developmental perspectives of the drugs targeting enzyme-instigated inflammation: A mini review. Medicinal Chemistry Research, 28, 417-449. - PubMed
  100. Prasher, P., Pooja, V., & Singh, P. (2014). Lead modification: Amino acid appended indoles as highly effective 5-LOX inhibitors. Bioorganic & Medicinal Chemistry, 22, 1642-1648. - PubMed
  101. Prasher, P., & Sharma, M. (2018). Medicinal chemistry of acridines and its analogues. MedChemComm, 9, 1589-1618. - PubMed
  102. Prasher, P., & Sharma, M. (2019). Tailored therapeutics based on 1,2,3-1H-triazoles: A mini review. Medicinal Chemistry Communications, 10, 1302-1328. - PubMed
  103. Prasher, P., Sharma, M., Aljabali, A. A., Gupta, G., Negi, P., Kapoor, D. N., Singh, I., Zacconi, F., Pinto, T. J. A., Silva, M. W., Bakshi, H., Chellappan, D. K., Tambuwala, M. M., & Dua, K. (2020). Hybrid molecules based on 1,3,5-triazine as potential therapeutics: A focused review. Drug Development Research. https://doi.org/10.1002/ddr.21704. - PubMed
  104. Prasher, P., Sharma, M., Zacconi, F., Gupta, G., Aljabali, A. A., Mishra, V., Tambuwala, M. M., Kapoor, D. N., Negi, P., Pinto, T. J. A., Singh, I., Chellappan, D. K., & Dua, K. (2020). Synthesis and anticancer properties of azole based chemotherapeutics as emerging chemical moieties: A comprehensive review. Current Organic Chemistry, 24. https://doi.org/10.2174/1385272824999200820152501. - PubMed
  105. Ragab, F. A., Heiba, H. I., El-Gazzar, M. G., Abou-Seri, S. M., El-Sabbagh, W. A., & El-Hazek, R. M. (2016). Synthesis of novel thiadiazole derivatives as selective COX-2 inhibitors. MedChemComm, 7, 2309-2327. - PubMed
  106. Raghavendra, N. M., Jyothsna, A., Rao, A. V., & Subrahmanyam, C. V. S. (2012). Synthesis, pharmacological evaluation and docking studies of N-(benzo[d]thiazol-2-yl)-2-(piperazin-1-yl)acetamide analogs as COX-2 inhibitors. Bioorganic & Medicinal Chemistry Letters, 22, 820-823. - PubMed
  107. Rahman, H. M. A., & Ozadali, K. (2012). Trimethyl-4-oxo-4,5,6,7-tetrahydroindazole-1-acetic acid: A new Lead compound with selective COX-2 inhibitory activity. Archiv der Pharmazie-Chemistry in Life Sciences, 345, 878-883. - PubMed
  108. Ranatunge, R. R., Augustyniak, M., Bandarage, U. K., Earl, R. A., Ellis, J. L., Garvey, D. S., Janero, D. R., Letts, L. G., Martino, A. M., Murthy, M. G., et al. (2004). Synthesis and selective Cyclooxygenase-2 inhibitory activity of a series of novel, nitric oxide donor-containing Pyrazoles. Journal of Medicinal Chemistry, 47, 2180-2193. - PubMed
  109. Rathore, A., Rahman, M. U., Siddiqui, A. A., Ali, A., & Shaharyar, A. (2015). Synthesis and evaluation of benzimidazole derivatives as selective COX-2 inhibitors. Medicinal Chemistry, 11, 188-199. - PubMed
  110. Rathore, A., Rahman, M. U., Siddiqui, A. A., Ali, A., & Shaharyar, M. (2014). Design and synthesis of Benzimidazole analogs endowed with oxadiazole as selective COX-2 inhibitor. Archiv der Pharmazie-Chemistry in Life Sciences, 347, 923-935. - PubMed
  111. Rawat, C., Kukal, S., Dahiya, U. R., & Kukreti, R. (2019). Cyclooxygenase-2 (COX-2) inhibitors: Future therapeutic strategies for epilepsy management. Journal of Neuroinflammation, 16, 197. - PubMed
  112. Ricciotti, E., & Fitzgerald, G. A. (2011). Prostaglandins and inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 986-1000. - PubMed
  113. Ricciotti, E., Yu, Y., Grosser, T., & Fitzgerald, G. A. (2013). COX-2, the dominant source of prostacyclin. Proceedings of the National Academy of Sciences of the United States of America, 110, E183. - PubMed
  114. Rosati, O., Curini, M., Marcotullio, M. C., Macchiarulo, A., Perfumi, M., Mattioli, L., Rismondo, F., & Cravotto, G. (2007). Synthesis, docking studies and anti-inflammatory activity of 4,5,6,7-tetrahydro-2H-indazole derivatives. Bioorganic & Medicinal Chemistry, 15, 3463-3473. - PubMed
  115. Rouzer, C. A., & Marnett, L. J. (2009). Cyclooxygenases: Structural and functional insights. Journal of Lipid Research, 50, S29-S34. - PubMed
  116. Saeed, E., & Alireza, F. (2006). Synthesis of 4-(4-Methylsulfonylphenyl)-3-phenyl-2(3H )-thiazole Thione derivatives as new potential COX-2 inhibitors. Chinese Journal of Chemistry, 24, 791-794. - PubMed
  117. Safaeian, L., Hajhashemi, V., & Ajoodanian, M. (2018). The effect of celecoxib on blood pressure and plasma oxidant/ antioxidant status in co-administration with glucocorticoid in rat. Biomedicine & Pharmacotherapy, 108, 1804-1808. - PubMed
  118. Sakya, S. M., Hou, X., Minich, M. L., Rast, B., Shavnya, A., DeMello, K. M. L., Cheng, H., Li, J., Jaynes, B. H., Mann, D. W., Petras, C. F., Siebel, S. B., & Haven, M. L. (2007). 5-heteroatom substituted pyrazoles as canine COX-2 inhibitors. Part III: Molecular modeling studies on binding contribution of 1-(5-methylsulfonyl)pyrid-2-yl and 4-nitrile. Bioorganic & Medicinal Chemistry Letters, 17, 1067-1072. - PubMed
  119. Sarnpitak, P., Mujumdar, P., Morisseau, C., Hwang, S. H., Hammock, B., Lurchenko, V., Zozulya, S., Gavalas, A., Geronikaki, A., Ivanenkov, Y., & Krasavin, M. (2014). Potent, orally available, selective COX-2 inhibitors based on 2-imidazoline core. European Journal of Medicinal Chemistry, 84, 160-172. - PubMed
  120. Schneider, C., Boeglin, W. E., & Brash, A. R. (2004). Identification of two cyclooxygenase active sire residues, leucine 384 and glycine 526, that control carbon ring cyclization in prostaglandin biosynthesis. The Journal of Biological Chemistry, 279, 4404-4414. - PubMed
  121. Shafi, S., Alam, M. M., Mulakayala, N., Mulakayala, C., Vanaja, G., Kalle, A. M., Pallu, R., & Alam, M. S. (2012). Synthesis of novel 2-mercapto benzothiazole and 1,2,3-triazole based bis-heterocycles: Their anti-inflammatory and anti-nociceptive activities. European Journal of Medicinal Chemistry, 49, 324-333. - PubMed
  122. Sharpless, K. B., & Manetsch, R. (2006). In situ click chemistry: A powerful means for lead discovery. Expert Opinion on Drug Discovery, 1, 525-538. - PubMed
  123. Shen, F.-Q., Wang, Z.-C., Wu, S.-Y., Ren, S.-Z., Man, R.-J., Wang, B.-Z., & Zhu, H.-L. (2017). Synthesis of novel hybrids of pyrazole and coumarin as dual inhibitors of COX-2 and 5-LOX. Bioorganic & Medicinal Chemistry Letters, 27, 3653-3660. - PubMed
  124. Signoroni, S., Frattini, M., Negri, T., Pastore, E., Tamborini, E., Casieri, P., Orsenigo, M., Da Riva, L., Radice, P., Sala, P., Gronchi, A., Bertario, L., Pierotti, M. A., & Pilotti, S. (2007). Cyclooxygenase-2 and platelet-derived growth factor receptors as potential targets in treating aggressive Fibromatosis. Clinical Cancer Research, 13, 5034-5040. - PubMed
  125. Singh, P., Prasher, P., Dhillon, P., & Bhatti, R. (2015). Indole based peptidomimetics as anti-inflammatory and anti-hyperalgesic agents: Dual inhibition of 5-LOX and COX-2 enzymes. European Journal of Medicinal Chemistry, 97, 104-123. - PubMed
  126. Stitham, J., Midgett, C., Martin, K. A., & Hwa, J. (2011). Prostacyclin: An inflammatory paradox. Frontiers in Pharmacology, 2, 24. - PubMed
  127. Sun, S. X., Lee, K. Y., Bertram, C. T., & Goldstein, J. L. (2007). Withdrawal of COX-2 selective inhibitors rofecoxib and valdecoxib: Impact on NSAID and gastroprotective drug prescribing and utilization. Current Medical Research and Opinion, 23, 1859-1866. - PubMed
  128. Swetha, K. S., Parameshwar, R., Reddy, B. M., & Babu, V. H. (2013). Synthesis of novel pyrazolyl tetrazoles as selective COX-2 inhibitors. Medicinal Chemistry Research, 22, 4886-4892. - PubMed
  129. Tageldin, G. N., Fahmy, S. M., Ashour, H. M., Khalil, M. A., Nassra, R. A., & Labouta, I. M. (2018). Design, synthesis and evaluation of some pyrazolo[3,4-d]pyrimidine derivatives bearing thiazolidinone moiety as anti-inflammatory agents. Bioorganic Chemistry, 80, 164-173. - PubMed
  130. Tariq, S., Alam, O., & Amir, M. (2018). Synthesis, p38α MAP kinase inhibition, anti-inflammatory activity, and molecular docking studies of 1,2,4-triazole-based benzothiazole-2-amines. Archiv der Pharmazie-Chemistry in Life Sciences, 351, 1700304. - PubMed
  131. Taylor, R. D., MacCoss, M., & Lawson, A. D. G. (2014). Rings in drugs. Journal of Medicinal Chemistry, 57, 5845-5859. - PubMed
  132. Tepperman, B. L., & Whittle, B. J. R. (1992). Endogenous nitric oxide and sensory neuropeptides interact in the modulation of rat gastric microcirculation. British Journal of Pharmacology, 105, 171-175. - PubMed
  133. Thore, S. N., Gupta, S. V., & Baheti, K. G. (2013). Docking, synthesis, and pharmacological investigation of novel substituted thiazole derivatives as non-carboxylic, anti-inflammatory, and analgesic agents. Medicinal Chemistry Research, 22, 3802-3811. - PubMed
  134. Tiwari, A. K., Singh, V. P., Yadav, P., Gupta, G., Singh, A., Goel, R. K., Shinde, P., & Mohan, C. G. (2014). Synthesis, biological evaluation and molecular modeling study of pyrazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Bioorganic Chemistry, 56, 8-15. - PubMed
  135. Vane, J. R., & Warner, T. D. (2000). Nomenclature for COX-2 inhibitors. The Lancet, 356, P1373-P1374. - PubMed
  136. Vecchio, A. J., Orlando, B. J., Nandagiri, R., & Malkowski, M. G. (2012). Investigating substrate promiscuity in cyclooxygenase-2. The role of Arg-120 and resides lining the hydrophobic groove. The Journal of Biological Chemistry, 287, 24619-24630. - PubMed
  137. Whittle, B. J. R. (2000). COX-1 and COX-2 products in the gut: Therapeutic impact of COX-2 inhibitors. Gut, 47, 320-325. - PubMed
  138. Williams, C. S., Mann, M., & DuBois, R. N. (1999). The role of cyclooxygenases in inflammation, cancer, and development. Oncogene, 18, 7908-7916. - PubMed
  139. Wuest, F., Tang, X., Kniess, T., Pietzsch, J., & Suresh, M. (2009). Synthesis and cyclooxygenase inhibition of various (aryl-1,2,3-triazole-1-yl)-methanesulfonylphenyl derivatives. Bioorganic & Medicinal Chemistry, 17, 1146-1151. - PubMed
  140. Yatam, S., Gundla, R., Jadav, S. S., Pedavenkatagari, N. R., Chimakurthy, J., Rani, N., & Kedam, T. (2018). Focused library design and synthesis of 2-mercapto benzothiazole linked 1,2,4-oxadiazoles as COX-2/5-LOX inhibitors. Journal of Molecular Structure, 1159, 193-204. - PubMed
  141. Yatam, S., Jadav, S. S., Gundla, K. P., Paidikondala, K., Ankireddy, A. R., Babu, B. N., Ahsan, M. J., & Gundla, R. (2019). 2-Mercapto Benzthiazole coupled benzyl Triazoles as new COX-2 inhibitors: Design, synthesis, biological testing and molecular modeling studies. ChemistrySelect, 4, 11081-11092. - PubMed
  142. Yatam, S., Jadav, S. S., Gundla, R., Gundla, K. P., Reddy, G. M., Ahsan, M. J., & Chimakurthy, J. (2018). Design, synthesis and biological evaluation of 2 (([5-aryl-1,2,4-oxadiazol-3-yl]methyl)thio)benzo[d]oxazoles: New Antiinflammatory and antioxidant agents. ChemistrySelect, 3, 10305-10310. - PubMed
  143. Yetik-Anacak, G., Sevin, G., Ozzayim, O., Dereli, M. V., & Ahmed, A. (2016). Hydrogen sulfide: A novel mechanism for the vascular protection by resveratrol under oxidative stress in mouse aorta. Vascular Pharmacology, 87, 76-82. - PubMed
  144. Zarghi, A., & Arfaei, S. (2011). Selective COX-2 inhibitors: A review of their structure-activity relationships. Iranian Journal of Pharmaceutical Research, 10, 65-683. - PubMed
  145. Zarghi, A., Reihanfard, H., Arfaei, S., Daraei, B., & Hedayati, M. (2012). Design and synthesis of new 1,2-diaryl-4,5,6,7-tetrahydro-1Hbenzo[d] imidazoles as selective cyclooxygenase (COX-2) inhibitors. Medicinal Chemistry Research, 21, 1869-1875. - PubMed
  146. Zarraga, I. G. E., & Schwarz, E. R. (2007). Coxibs and heart disease: What we have learned and what else we need to know. Journal of the American College of Cardiology, 49, 1-14. - PubMed

Publication Types