Display options
Share it on

bioRxiv. 2020 Nov 03; doi: 10.1101/2020.11.03.366757.

Structure of nonstructural protein 1 from SARS-CoV-2.

bioRxiv : the preprint server for biology

Lauren K Clark, Todd J Green, Chad M Petit

Affiliations

  1. Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294, USA.
  2. Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294, USA.

PMID: 33173873 PMCID: PMC7654870 DOI: 10.1101/2020.11.03.366757

Abstract

The periodic emergence of novel coronaviruses (CoVs) represents an ongoing public health concern with significant health and financial burden worldwide. The most recent occurrence originated in the city of Wuhan, China where a novel coronavirus (SARS-CoV-2) emerged causing severe respiratory illness and pneumonia. The continual emergence of novel coronaviruses underscores the importance of developing effective vaccines as well as novel therapeutic options that target either viral functions or host factors recruited to support coronavirus replication. The CoV nonstructural protein 1 (nsp1) has been shown to promote cellular mRNA degradation, block host cell translation, and inhibit the innate immune response to virus infection. Interestingly, deletion of the nsp1-coding region in infectious clones prevented the virus from productively infecting cultured cells. Because of nsp1's importance in the CoV lifecycle, it has been highlighted as a viable target for both antiviral therapy and vaccine development. However, the fundamental molecular and structural mechanisms that underlie nsp1 function remain poorly understood, despite its critical role in the viral lifecycle. Here we report the high-resolution crystal structure of the amino, globular portion of SARS-CoV-2 nsp1 (residues 10 - 127) at 1.77Å resolution. A comparison of our structure with the SARS-CoV-1 nsp1 structure reveals how mutations alter the conformation of flexible loops, inducing the formation of novel secondary structural elements and new surface features. Paired with the recently published structure of the carboxyl end of nsp1 (residues 148 - 180), our results provide the groundwork for future studies focusing on SARS-CoV-2 nsp1 structure and function during the viral lifecycle.

IMPORTANCE: The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent for the COVID-19 pandemic. One protein known to play a critical role in the coronavirus lifecycle is nonstructural protein1 (nsp1). As such, it has been highlighted in numerous studies as a target for both the development of antivirals and for the design of live-attenuated vaccines. Here we report the high-resolution crystal structure of nsp1 derived from SARS-CoV-2 at 1.77Å resolution. This structure will facilitate future studies focusing on understanding the relationship between structure and function for nsp1. In turn, understanding these structure-function relationships will allow nsp1 to be fully exploited as a target for both antiviral development and vaccine design.

References

  1. N Engl J Med. 2003 May 15;348(20):1953-66 - PubMed
  2. PLoS Pathog. 2015 Oct 29;11(10):e1005215 - PubMed
  3. Virology. 2005 Sep 30;340(2):209-23 - PubMed
  4. Nucleic Acids Res. 2019 Jan 8;47(D1):D464-D474 - PubMed
  5. Virus Res. 2015 Apr 16;202:89-100 - PubMed
  6. Curr Issues Mol Biol. 2017;21:1-20 - PubMed
  7. Nat Struct Mol Biol. 2020 Oct;27(10):959-966 - PubMed
  8. Lancet. 2020 Feb 15;395(10223):497-506 - PubMed
  9. Trends Microbiol. 2007 Feb;15(2):51-3 - PubMed
  10. J Virol. 2007 Jan;81(1):20-9 - PubMed
  11. Science. 2020 Sep 4;369(6508):1249-1255 - PubMed
  12. Lancet. 2020 Feb 15;395(10223):514-523 - PubMed
  13. Nat Rev Microbiol. 2003 Dec;1(3):209-18 - PubMed
  14. Nat Chem Biol. 2014 Sep;10(9):716-22 - PubMed
  15. J Virol. 2013 Mar;87(5):2949-55 - PubMed
  16. Virus Res. 2014 May 12;184:44-53 - PubMed
  17. Nat Rev Drug Discov. 2016 May;15(5):327-47 - PubMed
  18. J Virol. 2008 May;82(9):4471-9 - PubMed
  19. Nat Protoc. 2010 Apr;5(4):725-38 - PubMed
  20. Methods Enzymol. 1997;276:307-26 - PubMed
  21. Lancet. 2003 Jul 26;362(9380):293-4 - PubMed
  22. Nat Methods. 2015 Jan;12(1):7-8 - PubMed
  23. J Virol. 2012 Dec;86(24):13598-608 - PubMed
  24. J Biol Chem. 2019 Sep 13;294(37):13606-13618 - PubMed
  25. Cell. 1989 May 19;57(4):537-47 - PubMed
  26. Trends Mol Med. 2003 Aug;9(8):325-7 - PubMed
  27. Nat Struct Mol Biol. 2009 Nov;16(11):1134-40 - PubMed
  28. J Gen Virol. 2000 Apr;81(Pt 4):853-79 - PubMed
  29. J Am Chem Soc. 2016 Oct 5;138(39):12876-12884 - PubMed
  30. Curr Top Microbiol Immunol. 2005;287:57-94 - PubMed
  31. J Virol. 2011 Jan;85(1):638-43 - PubMed
  32. Diagn Microbiol Infect Dis. 2019 Mar;93(3):265-285 - PubMed
  33. Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12885-90 - PubMed
  34. PLoS One. 2013 Apr 08;8(4):e61166 - PubMed
  35. Annu Rev Med. 2005;56:357-81 - PubMed
  36. Virology. 2018 Sep;522:46-55 - PubMed
  37. Curr Protoc Bioinformatics. 2015 Dec 17;52:5.8.1-5.8.15 - PubMed
  38. Virology. 2005 Feb 20;332(2):498-510 - PubMed
  39. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000 - PubMed
  40. J Virol. 2012 Oct;86(20):11128-37 - PubMed
  41. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 - PubMed
  42. PLoS Pathog. 2007 Aug 10;3(8):e109 - PubMed
  43. J Clin Virol. 2004 Jul;30(3):211-3 - PubMed
  44. Viruses. 2013 May 22;5(5):1250-60 - PubMed
  45. J Virol. 2007 Apr;81(7):3151-61 - PubMed
  46. Viruses. 2020 Jul 28;12(8): - PubMed
  47. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 - PubMed
  48. PLoS Pathog. 2011 Dec;7(12):e1002433 - PubMed
  49. PLoS Pathog. 2011 Oct;7(10):e1002331 - PubMed
  50. J Virol. 2005 Dec;79(24):15016-26 - PubMed
  51. J Virol. 2007 Nov;81(21):11620-33 - PubMed
  52. N Engl J Med. 2003 Dec 18;349(25):2431-41 - PubMed
  53. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 - PubMed
  54. J Virol. 2018 Feb 12;92(5): - PubMed

Publication Types

Grant support