Display options
Share it on

Glia. 2021 Apr;69(4):943-953. doi: 10.1002/glia.23938. Epub 2020 Nov 26.

Type I interferon-activated microglia are critical for neuromyelitis optica pathology.

Glia

Agnieszka Wlodarczyk, Reza Khorooshi, Joanna Marczynska, Inge R Holtman, Mark Burton, Kirstine Nolling Jensen, Morten Blaabjerg, Morten Meyer, Mads Thomassen, Bart J L Eggen, Nasrin Asgari, Trevor Owens

Affiliations

  1. Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.
  2. Brain Research InterDisciplinary Guided Excellence (BRIDGE), University of Southern Denmark, Denmark.
  3. Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
  4. Department of Genetics, Odense University Hospital, Odense, Denmark.
  5. Department of Neurology, Odense University Hospital and Neurology Research Unit, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark.
  6. Department of Neurology, Slagelse Hospital, Slagelse, Denmark.

PMID: 33241604 DOI: 10.1002/glia.23938

Abstract

Neuromyelitis optica (NMO) is an inflammatory disease of the central nervous system (CNS) most frequently mediated by serum autoantibodies against the water channel aquaporin 4, expressed on CNS astrocytes, resulting in primary astrocytopathy. There is no cure for NMO, and treatment with Type I interferon (IFNI)-IFNβ is ineffective or even detrimental. We have previously shown that both NMO lesions and associated microglial activation were reduced in mice lacking the receptor for IFNβ. However, the role of microglia in NMO is not well understood. In this study, we clarify the pathomechanism for IFNI dependence of and the role of microglia in experimental NMO. Transcriptome analysis showed a strong IFNI footprint in affected CNS tissue as well as in microglial subpopulations. Treatment with IFNβ led to exacerbated pathology and further microglial activation as evidenced by expansion of a CD11c

© 2020 Wiley Periodicals LLC.

Keywords: CD11c+ microglia; Type I interferon; depletion; microglia; neuromyelitis optica

References

  1. Agasing, A. M., Wu, Q., Khatri, B., Borisow, N., Ruprecht, K., Brandt, A. U., … Axtell, R. C. (2020). Transcriptomics and proteomics reveal a cooperation between interferon and T-helper 17 cells in neuromyelitis optica. Nature Communications, 11(1), 2856. https://doi.org/10.1038/s41467-020-16625-7 - PubMed
  2. Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166-169. https://doi.org/10.1093/bioinformatics/btu638 - PubMed
  3. Anderson, S. R., Roberts, J. M., Zhang, J., Steele, M. R., Romero, C. O., Bosco, A., & Vetter, M. L. (2019). Developmental apoptosis promotes a disease-related gene signature and Independence from CSF1R signaling in retinal microglia. Cell Reports, 27(7), 2002-2013 e2005. https://doi.org/10.1016/j.celrep.2019.04.062 - PubMed
  4. Asgari, N., Khorooshi, R., Lillevang, S. T., & Owens, T. (2013). Complement-dependent pathogenicity of brain-specific antibodies in cerebrospinal fluid. Journal of Neuroimmunology, 254(1-2), 76-82. https://doi.org/10.1016/j.jneuroim.2012.09.010 - PubMed
  5. Benmamar-Badel, A., Owens, T., & Wlodarczyk, A. (2020). Protective microglial subset in development, aging, and disease: Lessons from transcriptomic studies. Frontiers in Immunology, 11, 430. https://doi.org/10.3389/fimmu.2020.00430 - PubMed
  6. Berg, C. T., Khorooshi, R., Asgari, N., & Owens, T. (2017). Influence of type I IFN signaling on anti-MOG antibody-mediated demyelination. Journal of Neuroinflammation, 14(1), 127. https://doi.org/10.1186/s12974-017-0899-1 - PubMed
  7. Bruttger, J., Karram, K., Wortge, S., Regen, T., Marini, F., Hoppmann, N., … Waisman, A. (2015). Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity, 43(1), 92-106. https://doi.org/10.1016/j.immuni.2015.06.012 - PubMed
  8. Butovsky, O., Jedrychowski, M. P., Moore, C. S., Cialic, R., Lanser, A. J., Gabriely, G., … Weiner, H. L. (2014). Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nature Neuroscience, 17(1), 131-143. https://doi.org/10.1038/nn.3599 - PubMed
  9. Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., … Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15-21. https://doi.org/10.1093/bioinformatics/bts635 - PubMed
  10. Elmore, M. R., Najafi, A. R., Koike, M. A., Dagher, N. N., Spangenberg, E. E., Rice, R. A., … Green, K. N. (2014). Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron, 82(2), 380-397. https://doi.org/10.1016/j.neuron.2014.02.040 - PubMed
  11. Han, J., Harris, R. A., & Zhang, X. M. (2017). An updated assessment of microglia depletion: Current concepts and future directions. Molecular Brain, 10(1), 25. https://doi.org/10.1186/s13041-017-0307-x - PubMed
  12. Khorooshi, R., Morch, M. T., Holm, T. H., Berg, C. T., Dieu, R. T., Draeby, D., … Owens, T. (2015). Induction of endogenous type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis. Acta Neuropathologica, 130(1), 107-118. https://doi.org/10.1007/s00401-015-1418-z - PubMed
  13. Khorooshi, R., Tofte-Hansen, E. U., Tygesen, C., Montanana-Rosell, R., Limburg, H. L., Marczynska, J., … Owens, T. (2019). Angiotensin AT2 receptor-induced interleukin-10 attenuates neuromyelitis optica spectrum disorder-like pathology. Multiple Sclerosis, 26, 1187-1196. https://doi.org/10.1177/1352458519860327 - PubMed
  14. Khorooshi, R., Wlodarczyk, A., Asgari, N., & Owens, T. (2013). Neuromyelitis optica-like pathology is dependent on type I interferon response. Experimental Neurology, 247, 744-747. https://doi.org/10.1016/j.expneurol.2013.02.005 - PubMed
  15. Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4), R36. https://doi.org/10.1186/gb-2013-14-4-r36 - PubMed
  16. Kim, S. H., Kim, W., Li, X. F., Jung, I. J., & Kim, H. J. (2012). Does interferon beta treatment exacerbate neuromyelitis optica spectrum disorder? Multiple Sclerosis, 18(10), 1480-1483. https://doi.org/10.1177/1352458512439439 - PubMed
  17. Kocur, M., Schneider, R., Pulm, A. K., Bauer, J., Kropp, S., Gliem, M., … Scheu, S. (2015). IFNbeta secreted by microglia mediates clearance of myelin debris in CNS autoimmunity. Acta Neuropathologica Communications, 3, 20. https://doi.org/10.1186/s40478-015-0192-4 - PubMed
  18. Krasemann, S., Madore, C., Cialic, R., Baufeld, C., Calcagno, N., El Fatimy, R., … Butovsky, O. (2017). The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity, 47(3), 566-581 e569. https://doi.org/10.1016/j.immuni.2017.08.008 - PubMed
  19. Lennon, V. A., Kryzer, T. J., Pittock, S. J., Verkman, A. S., & Hinson, S. R. (2005). IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. The Journal of Experimental Medicine, 202(4), 473-477. https://doi.org/10.1084/jem.20050304 - PubMed
  20. Misu, T., Fujihara, K., Nakamura, M., Murakami, K., Endo, M., Konno, H., & Itoyama, Y. (2006). Loss of aquaporin-4 in active perivascular lesions in neuromyelitis optica: A case report. The Tohoku Journal of Experimental Medicine, 209(3), 269-275. https://doi.org/10.1620/tjem.209.269 - PubMed
  21. Misu, T., Hoftberger, R., Fujihara, K., Wimmer, I., Takai, Y., Nishiyama, S., … Lassmann, H. (2013). Presence of six different lesion types suggests diverse mechanisms of tissue injury in neuromyelitis optica. Acta Neuropathologica, 125(6), 815-827. https://doi.org/10.1007/s00401-013-1116-7 - PubMed
  22. Najafi, A. R., Crapser, J., Jiang, S., Ng, W., Mortazavi, A., West, B. L., & Green, K. N. (2018). A limited capacity for microglial repopulation in the adult brain. Glia, 66(11), 2385-2396. https://doi.org/10.1002/glia.23477 - PubMed
  23. Oji, S., Nicolussi, E. M., Kaufmann, N., Zeka, B., Schanda, K., Fujihara, K., … Bradl, M. (2016). Experimental neuromyelitis optica induces a type I interferon signature in the spinal cord. PLoS One, 11(3), e0151244. https://doi.org/10.1371/journal.pone.0151244 - PubMed
  24. Owens, T., Khorooshi, R., Wlodarczyk, A., & Asgari, N. (2014). Interferons in the central nervous system: A few instruments play many tunes. Glia, 62(3), 339-355 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24588027 - PubMed
  25. Palace, J., Leite, M. I., Nairne, A., & Vincent, A. (2010). Interferon beta treatment in neuromyelitis optica: Increase in relapses and aquaporin 4 antibody titers. Archives of Neurology, 67(8), 1016-1017. https://doi.org/10.1001/archneurol.2010.188 - PubMed
  26. Prinz, M., Schmidt, H., Mildner, A., Knobeloch, K. P., Hanisch, U. K., Raasch, J., … Kalinke, U. (2008). Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity, 28(5), 675-686. https://doi.org/10.1016/j.immuni.2008.03.011 - PubMed
  27. Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. https://doi.org/10.1093/bioinformatics/btp616 - PubMed
  28. Roussos, P., Katsel, P., Davis, K. L., Siever, L. J., & Haroutunian, V. (2012). A system-level transcriptomic analysis of schizophrenia using postmortem brain tissue samples. Archives of General Psychiatry, 69(12), 1205-1213. https://doi.org/10.1001/archgenpsychiatry.2012.704 - PubMed
  29. Rusinova, I., Forster, S., Yu, S., Kannan, A., Masse, M., Cumming, H., … Hertzog, P. J. (2013). Interferome v2.0: An updated database of annotated interferon-regulated genes. Nucleic Acids Research, 41(Database issue), D1040-D1046. https://doi.org/10.1093/nar/gks1215 - PubMed
  30. Tanaka, M., Tanaka, K., & Komori, M. (2009). Interferon-beta(1b) treatment in neuromyelitis optica. European Neurology, 62(3), 167-170. https://doi.org/10.1159/000227277 - PubMed
  31. Trebst, C., Jarius, S., Berthele, A., Paul, F., Schippling, S., Wildemann, B., … Neuromyelitis Optica Study Group. (2014). Update on the diagnosis and treatment of neuromyelitis optica: Recommendations of the Neuromyelitis Optica Study Group (NEMOS). Journal of Neurology, 261(1), 1-16. https://doi.org/10.1007/s00415-013-7169-7 - PubMed
  32. Vinet, J., Weering, H. R., Heinrich, A., Kalin, R. E., Wegner, A., Brouwer, N., … Biber, K. (2012). Neuroprotective function for ramified microglia in hippocampal excitotoxicity. Journal of Neuroinflammation, 9, 27. https://doi.org/10.1186/1742-2094-9-27 - PubMed
  33. Wlodarczyk, A., Benmamar-Badel, A., Cedile, O., Jensen, K. N., Kramer, I., Elsborg, N. B., & Owens, T. (2018). CSF1R stimulation promotes increased Neuroprotection by CD11c+ microglia in EAE. Frontiers in Cellular Neuroscience, 12, 523. https://doi.org/10.3389/fncel.2018.00523 - PubMed
  34. Wlodarczyk, A., Cédile, O., Jensen, K. N., Jasson, A., Mony, J. T., Khorooshi, R., & Owens, T. (2015). Pathologic and protective roles for microglial subsets and bone marrow- and blood-derived myeloid cells in central nervous system inflammation. Frontiers in Immunology, 6, 463-473. https://doi.org/10.3389/fimmu.2015.00463 - PubMed
  35. Wlodarczyk, A., Holtman, I. R., Krueger, M., Yogev, N., Bruttger, J., Khorooshi, R., … Owens, T. (2017). A novel microglial subset plays a key role in myelinogenesis in developing brain. The EMBO Journal, 36(22), 3292-3308. https://doi.org/10.15252/embj.201696056 - PubMed
  36. Zhang, H., Bennett, J. L., & Verkman, A. S. (2011). Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms. Annals of Neurology, 70(6), 943-954. https://doi.org/10.1002/ana.22551 - PubMed

Publication Types