Display options
Share it on

Sci Data. 2020 Nov 27;7(1):418. doi: 10.1038/s41597-020-00753-2.

Real-world longitudinal data collected from the SleepHealth mobile app study.

Scientific data

Sean Deering, Abhishek Pratap, Christine Suver, A Joseph Borelli, Adam Amdur, Will Headapohl, Carl J Stepnowsky

Affiliations

  1. Health Services Research & Development, VA San Diego Healthcare System, San Diego, CA, 92161, USA.
  2. Sage Bionetworks, Seattle, WA, 98109, USA.
  3. American Sleep Apnea Association, Washington, DC, 20001, USA.
  4. Health Services Research & Development, VA San Diego Healthcare System, San Diego, CA, 92161, USA. [email protected].
  5. Department of Medicine, University of California at San Diego, La Jolla, CA, 92037, USA. [email protected].

PMID: 33247114 PMCID: PMC7695828 DOI: 10.1038/s41597-020-00753-2

Abstract

Conducting biomedical research using smartphones is a novel approach to studying health and disease that is only beginning to be meaningfully explored. Gathering large-scale, real-world data to track disease manifestation and long-term trajectory in this manner is quite practical and largely untapped. Researchers can assess large study cohorts using surveys and sensor-based activities that can be interspersed with participants' daily routines. In addition, this approach offers a medium for researchers to collect contextual and environmental data via device-based sensors, data aggregator frameworks, and connected wearable devices. The main aim of the SleepHealth Mobile App Study (SHMAS) was to gain a better understanding of the relationship between sleep habits and daytime functioning utilizing a novel digital health approach. Secondary goals included assessing the feasibility of a fully-remote approach to obtaining clinical characteristics of participants, evaluating data validity, and examining user retention patterns and data-sharing preferences. Here, we provide a description of data collected from 7,250 participants living in the United States who chose to share their data broadly with the study team and qualified researchers worldwide.

References

  1. Sleep Med. 2018 Feb;42:90-96 - PubMed
  2. J Sleep Res. 2003 Mar;12(1):1-12 - PubMed
  3. NPJ Digit Med. 2020 Feb 17;3:21 - PubMed
  4. Sleep. 2014 Jan 01;37(1):9-17 - PubMed
  5. Chronobiol Int. 2006;23(6):1379-87 - PubMed
  6. J Occup Environ Med. 2011 Oct;53(10):1146-54 - PubMed
  7. Br J Clin Pharmacol. 2019 Sep;85(9):1874-1877 - PubMed
  8. JAMA Netw Open. 2020 Apr 1;3(4):e202971 - PubMed
  9. NCHS Data Brief. 2015 Dec;(229):1-8 - PubMed
  10. NPJ Digit Med. 2020 Mar 23;3:42 - PubMed
  11. Sleep Sci. 2018 Mar-Apr;11(2):56-64 - PubMed
  12. Sci Data. 2019 Apr 11;6(1):24 - PubMed
  13. MMWR Morb Mortal Wkly Rep. 2016 Feb 19;65(6):137-41 - PubMed
  14. Behav Res Methods. 2017 Jun;49(3):1020-1029 - PubMed
  15. Rand Health Q. 2017 Jan 1;6(4):11 - PubMed
  16. Sci Data. 2019 Mar 19;6(1):6 - PubMed
  17. Sci Data. 2016 Mar 03;3:160011 - PubMed
  18. J Occup Environ Med. 2010 Jan;52(1):91-8 - PubMed
  19. Clin Neurophysiol. 2006 Jul;117(7):1574-81 - PubMed
  20. Sci Data. 2018 May 22;5:180096 - PubMed
  21. MMWR Morb Mortal Wkly Rep. 2011 Mar 4;60(8):239-42 - PubMed
  22. JAMA Psychiatry. 2019 Feb 1;76(2):190-198 - PubMed
  23. Sleep Med. 2016 Jan;17:87-98 - PubMed
  24. JAMA Cardiol. 2017 Jan 1;2(1):67-76 - PubMed
  25. Acta Astronaut. 2011 Dec 1;69(11-12):949-959 - PubMed
  26. Sleep. 2012 Feb 01;35(2):287-302 - PubMed
  27. Sleep. 2012 Dec 01;35(12):1593-602 - PubMed
  28. Sleep Med Clin. 2009 Mar 1;4(1):37-46 - PubMed
  29. Prim Care. 2005 Jun;32(2):305-18, v - PubMed
  30. Annu Rev Clin Psychol. 2008;4:1-32 - PubMed
  31. JMIR Res Protoc. 2019 Jan 21;8(1):e10974 - PubMed

MeSH terms

Publication Types