Display options
Share it on

Front Aging Neurosci. 2020 Oct 22;12:576627. doi: 10.3389/fnagi.2020.576627. eCollection 2020.

Graph Theory Analysis Reveals Resting-State Compensatory Mechanisms in Healthy Aging and Prodromal Alzheimer's Disease.

Frontiers in aging neuroscience

Qumars Behfar, Stefan Kambiz Behfar, Boris von Reutern, Nils Richter, Julian Dronse, Ronja Fassbender, Gereon R Fink, Oezguer A Onur

Affiliations

  1. Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
  2. Cognitive Neuroscience, Research Centre Jülich, Institute of Neuroscience and Medicine (INM-3), Jülich, Germany.
  3. Laboratory for Innovation Science at Harvard (LISH), Harvard University, Cambridge, MA, United States.

PMID: 33192468 PMCID: PMC7642892 DOI: 10.3389/fnagi.2020.576627

Abstract

Several theories of cognitive compensation have been suggested to explain sustained cognitive abilities in healthy brain aging and early neurodegenerative processes. The growing number of studies investigating various aspects of task-based compensation in these conditions is contrasted by the shortage of data about resting-state compensatory mechanisms. Using our proposed criterion-based framework for compensation, we investigated 45 participants in three groups: (i) patients with mild cognitive impairment (MCI) and positive biomarkers indicative of Alzheimer's disease (AD); (ii) cognitively normal young adults; (iii) cognitively normal older adults. To increase reliability, three sessions of resting-state functional magnetic resonance imaging for each participant were performed on different days (135 scans in total). To elucidate the dimensions and dynamics of resting-state compensatory mechanisms, we used graph theory analysis along with volumetric analysis. Graph theory analysis was applied based on the Brainnetome atlas, which provides a connectivity-based parcellation framework. Comprehensive neuropsychological examinations including the Rey Auditory Verbal Learning Test (RAVLT) and the Trail Making Test (TMT) were performed, to relate graph measures of compensatory nodes to cognition. To avoid false-positive findings, results were corrected for multiple comparisons. First, we observed an increase of degree centrality in cognition related brain regions of the middle frontal gyrus, precentral gyrus and superior parietal lobe despite local atrophy in MCI and healthy aging, indicating a resting-state connectivity increase with positive biomarkers. When relating the degree centrality measures to cognitive performance, we observed that greater connectivity led to better RAVLT and TMT scores in MCI and, hence, might constitute a compensatory mechanism. The detection and improved understanding of the compensatory dynamics in healthy aging and prodromal AD is mandatory for implementing and tailoring preventive interventions aiming at preserved overall cognitive functioning and delayed clinical onset of dementia.

Copyright © 2020 Behfar, Behfar, von Reutern, Richter, Dronse, Fassbender, Fink and Onur.

Keywords: Brainnetome atlas; compensation; degree centrality; healthy aging; mild cognitive impairment

References

  1. Eur J Neurol. 2008 Dec;15(12):1286-92 - PubMed
  2. Behav Neurol. 2010;23(1-2):51-63 - PubMed
  3. Curr Alzheimer Res. 2015;12(6):520-6 - PubMed
  4. Hum Brain Mapp. 2015 Oct;36(10):3988-4003 - PubMed
  5. Neuron. 2015 Jan 7;85(1):11-26 - PubMed
  6. Alzheimers Dement. 2016 Mar;12(3):292-323 - PubMed
  7. Neuropsychol Rev. 2010 Sep;20(3):236-60 - PubMed
  8. Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11747-52 - PubMed
  9. Neuropsychologia. 1971 Mar;9(1):97-113 - PubMed
  10. Neural Plast. 2014;2014:541870 - PubMed
  11. Brain Imaging Behav. 2016 Sep;10(3):799-817 - PubMed
  12. Alzheimers Dement. 2018 Apr;14(4):535-562 - PubMed
  13. Front Neuroinform. 2009 Jul 09;3:23 - PubMed
  14. Neuropsychology. 2005 Mar;19(2):223-32 - PubMed
  15. Annu Rev Neurosci. 2014;37:409-34 - PubMed
  16. Front Aging Neurosci. 2014 Nov 07;6:301 - PubMed
  17. Hum Brain Mapp. 2014 Jul;35(7):3152-69 - PubMed
  18. Perspect Psychol Sci. 2017 Nov;12(6):1100-1122 - PubMed
  19. Trends Cogn Sci. 2016 Jun;20(6):425-443 - PubMed
  20. Cereb Cortex. 2008 Aug;18(8):1843-55 - PubMed
  21. Nat Rev Neurosci. 2009 Mar;10(3):186-98 - PubMed
  22. Neuroimage. 2013 Dec;83:1098-108 - PubMed
  23. J Neurosci Methods. 2010 Oct 30;193(1):145-55 - PubMed
  24. Lancet Neurol. 2014 Jun;13(6):614-29 - PubMed
  25. BMC Neurol. 2011 Jun 23;11:75 - PubMed
  26. Brain Connect. 2012;2(3):125-41 - PubMed
  27. Neurosci Biobehav Rev. 2013 Dec;37(10 Pt 2):2760-73 - PubMed
  28. Neuroimage Clin. 2018 Jun 18;19:948-962 - PubMed
  29. Cereb Cortex. 2006 Oct;16(10):1487-93 - PubMed
  30. Neuropsychologia. 2012 Jan;50(1):55-66 - PubMed
  31. Neuroimage. 2013 Dec;83:174-88 - PubMed
  32. Neuroimage. 2002 Oct;17(2):825-41 - PubMed
  33. Neurobiol Aging. 2012 Jul;33(7):1284-97 - PubMed
  34. Neuron. 2012 Jan 12;73(1):8-22 - PubMed
  35. Brain. 2017 Apr 1;140(4):1158-1165 - PubMed
  36. Behav Res Methods. 2007 May;39(2):175-91 - PubMed
  37. Neuron. 2012 May 10;74(3):467-74 - PubMed
  38. Magn Reson Imaging. 2009 Oct;27(8):1163-74 - PubMed
  39. Alzheimers Dement. 2015 May;11(5):523-32 - PubMed
  40. PLoS Comput Biol. 2010 Nov 18;6(11):e1001006 - PubMed
  41. Arch Neurol. 2001 Dec;58(12):1985-92 - PubMed
  42. Psychol Aging. 2002 Mar;17(1):85-100 - PubMed
  43. Nat Rev Neurosci. 2018 Nov;19(11):701-710 - PubMed
  44. Neuroscientist. 2017 Dec;23(6):616-626 - PubMed
  45. Cereb Cortex. 2008 May;18(5):1201-9 - PubMed
  46. Neuroimage. 2011 Aug 1;57(3):938-49 - PubMed
  47. Front Syst Neurosci. 2010 Jun 07;4:16 - PubMed
  48. Neuron. 2002 Feb 28;33(5):827-40 - PubMed
  49. Neurology. 2016 Aug 2;87(5):539-47 - PubMed
  50. Cereb Cortex. 2003 Dec;13(12):1369-74 - PubMed
  51. Neuroimage. 2013 Aug 1;76:183-201 - PubMed
  52. Cereb Cortex. 2016 Aug;26(8):3508-26 - PubMed
  53. Clin Neurophysiol. 2017 Jun;128(6):882-891 - PubMed
  54. Cereb Cortex. 2013 Nov;23(11):2677-89 - PubMed
  55. Psychol Bull. 2010 Jul;136(4):659-76 - PubMed

Publication Types