Display options
Share it on

Front Physiol. 2020 Oct 22;11:576209. doi: 10.3389/fphys.2020.576209. eCollection 2020.

Transient Receptor Potential Ankyrin 1 Mediates Hypoxic Responses in Mice.

Frontiers in physiology

Sichong Chen, Nobuaki Takahashi, Changping Chen, Jordan L Pauli, Chiharu Kuroki, Jun Kaminosono, Hideki Kashiwadani, Yuichi Kanmura, Yasuo Mori, Shaowu Ou, Liying Hao, Tomoyuki Kuwaki

Affiliations

  1. Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
  2. Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China.
  3. Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
  4. The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan.
  5. Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China.
  6. Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.

PMID: 33192579 PMCID: PMC7642990 DOI: 10.3389/fphys.2020.576209

Abstract

Transient receptor potential ankyrin 1 (TRPA1) is a non-selective cation channel that is broadly expressed in sensory pathways, such as the trigeminal and vagus nerves. It is capable of detecting various irritants in inspired gasses and is activated during hypoxia. In this study, the role of TRPA1 in hypoxia-induced behavioral, respiratory, and cardiovascular responses was examined through four lines of experiments using TRPA1 knockout (KO) mice and wild type (WT) littermates. First, KO mice showed significantly attenuated avoidance behavior in response to a low (15%) oxygen environment. Second, the wake-up response to a hypoxic ramp (from 21 to 10% O

Copyright © 2020 Chen, Takahashi, Chen, Pauli, Kuroki, Kaminosono, Kashiwadani, Kanmura, Mori, Ou, Hao and Kuwaki.

Keywords: avoidance behavior; hypoxic arousal; respiratory chemoreflex; transient receptor potential ankyrin-1; trigeminal afferent nerve

References

  1. Sci Rep. 2013 Oct 31;3:3100 - PubMed
  2. Front Behav Neurosci. 2019 Jan 08;12:327 - PubMed
  3. PLoS One. 2016 Mar 15;11(3):e0151602 - PubMed
  4. Physiology (Bethesda). 2015 Sep;30(5):340-8 - PubMed
  5. J Appl Physiol Respir Environ Exerc Physiol. 1978 Apr;44(4):512-20 - PubMed
  6. Arch Histol Cytol. 1995 Mar;58(1):117-26 - PubMed
  7. Toxicol Pathol. 2006;34(3):252-69 - PubMed
  8. Brain Struct Funct. 2014 Jan;219(1):415-30 - PubMed
  9. Jpn J Physiol. 1997 Aug;47(4):317-26 - PubMed
  10. J Comp Neurol. 2010 Mar 1;518(5):687-98 - PubMed
  11. Sci Rep. 2019 Mar 26;9(1):5132 - PubMed
  12. Physiol Rep. 2016 Dec;4(24): - PubMed
  13. Nat Commun. 2018 May 23;9(1):2041 - PubMed
  14. J Nucl Med. 2006 Jun;47(6):974-80 - PubMed
  15. J Appl Physiol (1985). 2007 Nov;103(5):1772-9 - PubMed
  16. J Appl Physiol (1985). 2003 Feb;94(2):525-32 - PubMed
  17. Acta Otolaryngol. 2010 Nov;130(11):1278-86 - PubMed
  18. Neuron. 2006 Apr 20;50(2):277-89 - PubMed
  19. J Physiol. 2017 Sep 15;595(18):6091-6120 - PubMed
  20. Eur J Appl Physiol Occup Physiol. 1995;71(1):1-27 - PubMed
  21. Acta Physiol (Oxf). 2014 Apr;210(4):928-38 - PubMed
  22. Neuroscience. 1978;3(12):1137-46 - PubMed
  23. Cell Metab. 2018 Feb 6;27(2):281-298 - PubMed
  24. J Physiol. 1973 Jan;228(2):279-84 - PubMed
  25. J Appl Physiol (1985). 2008 Feb;104(2):499-507 - PubMed
  26. Nat Chem Biol. 2011 Aug 28;7(10):701-11 - PubMed
  27. J Vis Exp. 2013 Aug 10;(78): - PubMed
  28. Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10719-24 - PubMed

Publication Types