Display options
Share it on

Toxicol Rep. 2020 Oct 20;7:1459-1464. doi: 10.1016/j.toxrep.2020.10.015. eCollection 2020.

Azure B as a novel cyanide antidote: Preclinical in-vivo studies.

Toxicology reports

Philippe Haouzi, Marissa McCann, Nicole Tubbs

Affiliations

  1. Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA.

PMID: 33194557 PMCID: PMC7645636 DOI: 10.1016/j.toxrep.2020.10.015

Abstract

We have determined the effects of azure B (AzB), the main demethylated metabolite of methylene blue (MB), on a model of lethal cyanide intoxication. Our rationale was the following: AzB 1- possesses redox properties very similar to those of MB, which is a potent cyanide antidote, 2- may present a higher intracellular diffusibility than MB, 3- is already present in commercially available solutions of MB, and 4- appears very quickly in the blood after MB administration. AzB could therefore be a member of the phenothiazium chromophore family of interest to treat cyanide intoxication. We found, in spontaneously breathing urethane sedated rats, that AzB mimicked the effects of MB by increasing metabolism, ventilation and cardiac contractility up to 30-40 mg/kg. AzB had a lethal toxicity when the dose of 60 mg/kg was reached. Doses of AzB were therefore chosen in keeping with these data and the doses of MB previously used against cyanide intoxication (4-20 mg/kg) in the rat - doses corresponding to those used in humans to treat methemoglobinemia. KCN, infused at the rate of 0.375 mg/kg/min iv for 13 min, was fatal within 15 min in 100 % of our un-anesthetized rats. AzB at the dose of 4 mg/kg (n = 5) or 10 mg/kg (n = 5) administered 3 min into cyanide infusion allowed 100 % of the animals to survive with no clinical sequelae. The onset of coma was also significantly delayed and no apnea or gasping occurred. At the dose of 20 mg/kg, AzB was much less effective. At 4 mg/kg, the antidotal effects of AzB were significantly better than those produced by MB at the same dose and were not different from the effects produced by 20 mg/kg MB. We conclude that AzB is a potent cyanide antidote at relatively low doses.

© 2020 The Authors.

Keywords: Antidote; Blue dyes; Cyanide

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  1. J Clin Pharmacol. 1992 Apr;32(4):368-75 - PubMed
  2. Agents Actions. 1991 Nov;34(3-4):424-8 - PubMed
  3. Science. 1934 Jul 6;80(2062):15-6 - PubMed
  4. J Med Toxicol. 2016 Dec;12(4):370-379 - PubMed
  5. Toxicol Sci. 2019 Apr 1;168(2):443-459 - PubMed
  6. Clin Toxicol (Phila). 2015 Jul;53(6):525-39 - PubMed
  7. Ann Emerg Med. 2007 Jun;49(6):806-13 - PubMed
  8. J Toxicol Clin Toxicol. 1987;25(1-2):121-33 - PubMed
  9. J Emerg Med. 2010 May;38(4):467-76 - PubMed
  10. J Physiol. 1989 Apr;411:393-418 - PubMed
  11. Pharm Res. 1988 Dec;5(12):749-52 - PubMed
  12. Cardiovasc Toxicol. 2018 Oct;18(5):407-419 - PubMed
  13. Toxicol Rep. 2020 Sep 17;7:1263-1271 - PubMed
  14. Curr Pharm Biotechnol. 2012 Aug;13(10):1940-8 - PubMed
  15. PLoS One. 2015 Jun 26;10(6):e0131340 - PubMed
  16. Ann Emerg Med. 2017 Jun;69(6):718-725.e4 - PubMed
  17. Ann N Y Acad Sci. 2020 Nov;1479(1):108-121 - PubMed
  18. Neuropharmacology. 2017 Sep 1;123:287-298 - PubMed
  19. J Physiol. 1992 Aug;454:467-90 - PubMed
  20. Biomed Chromatogr. 2014 Apr;28(4):518-24 - PubMed
  21. Ann N Y Acad Sci. 2016 Jun;1374(1):29-40 - PubMed
  22. Circ Res. 1969 Jul;25(1):53-66 - PubMed
  23. Ann N Y Acad Sci. 2016 Jun;1374(1):202-9 - PubMed
  24. Ann Emerg Med. 2015 Apr;65(4):416-22 - PubMed
  25. J Appl Physiol (1985). 2018 May 1;124(5):1164-1176 - PubMed
  26. Crit Rev Toxicol. 2002 Jul;32(4):259-89 - PubMed
  27. J Emerg Med. 1987;5(2):115-21 - PubMed
  28. Trop Med Int Health. 2005 Jun;10(6):501-11 - PubMed
  29. Am J Physiol Regul Integr Comp Physiol. 2016 Jun 1;310(11):R1030-44 - PubMed
  30. Chem Res Toxicol. 2013 May 20;26(5):828-36 - PubMed
  31. Toxicol Sci. 2019 Jun 07;: - PubMed
  32. Br Med J (Clin Res Ed). 1986 Aug 30;293(6546):538 - PubMed
  33. J Physiol. 1983 Jun;339:107-22 - PubMed
  34. Shock. 2017 Mar;47(3):352-362 - PubMed
  35. Tohoku J Exp Med. 1968 Jul;95(3):271-87 - PubMed
  36. Eur J Emerg Med. 2013 Feb;20(1):65-6 - PubMed
  37. Am J Emerg Med. 2007 Jun;25(5):551-8 - PubMed
  38. J Med Chem. 2013 Feb 14;56(3):1346-9 - PubMed
  39. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11213-8 - PubMed
  40. Antimicrob Agents Chemother. 2008 Jan;52(1):183-91 - PubMed
  41. Virchows Arch. 2009 Mar;454(3):341-4 - PubMed
  42. Neuroscience. 1996 Aug;73(4):989-98 - PubMed
  43. Ann Emerg Med. 1999 Nov;34(5):646-56 - PubMed
  44. Toxicol Sci. 2019 Jul 1;170(1):82-94 - PubMed
  45. Toxicol Lett. 2007 Dec 10;175(1-3):111-7 - PubMed
  46. Hum Exp Toxicol. 2007 Mar;26(3):191-201 - PubMed
  47. N Engl J Med. 1991 Dec 19;325(25):1761-6 - PubMed
  48. Neurobiol Aging. 2011 Dec;32(12):2325.e7-16 - PubMed
  49. Ann Emerg Med. 2012 Oct;60(4):415-22 - PubMed
  50. Clin Toxicol (Phila). 2018 Sep;56(9):828-840 - PubMed
  51. Clin Toxicol (Phila). 2012 Dec;50(10):911-1164 - PubMed
  52. Chem Res Toxicol. 2011 Jul 18;24(7):1104-12 - PubMed

Publication Types

Grant support