Display options
Share it on

Front Pediatr. 2020 Oct 29;8:516698. doi: 10.3389/fped.2020.516698. eCollection 2020.

Improving Newborn Respiratory Outcomes With a Sustained Inflation: A Systematic Narrative Review of Factors Regulating Outcome in Animal and Clinical Studies.

Frontiers in pediatrics

Calista J Lambert, Stuart B Hooper, Arjan B Te Pas, Erin V McGillick

Affiliations

  1. The Ritchie Centre Hudson Institute of Medical Research, Melbourne, VIC, Australia.
  2. The Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia.
  3. Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands.

PMID: 33194881 PMCID: PMC7658322 DOI: 10.3389/fped.2020.516698

Abstract

Respiratory support is critically important for survival of newborns who fail to breathe spontaneously at birth. Although there is no internationally accepted definition of a sustained inflation (SI), it has commonly been defined as a positive pressure inflation designed to establish functional residual capacity and applied over a longer time period than normally used in standard respiratory support (SRS). Outcomes vary distinctly between studies and to date there has been no comprehensive investigation of differences in SI approach and study outcome in both pre-clinical and clinical studies. A systematic literature search was performed and, after screening, identified 17 animal studies and 17 clinical studies evaluating use of a SI in newborns compared to SRS during neonatal resuscitation. Study demographics including gestational age, SI parameters (length, repetitions, pressure, method of delivery) and study outcomes were compared. Animal studies provide mechanistic understanding of a SI on the physiology underpinning the cardiorespiratory transition at birth. In clinical studies, there is considerable difference in study quality, delivery of SIs (number, pressure, length) and timing of primary outcome evaluation which limits direct comparison between studies. The largest difference is method of delivery, where the role of a SI has been observed in intubated animals, as the inflation pressure is directly applied to the lung, bypassing the obstructed upper airway in an apnoeic state. This highlights a potential limitation in clinical use of a SI applied non-invasively. Further research is required to identify if a SI may have greater benefits in subpopulations of newborns.

Copyright © 2020 Lambert, Hooper, te Pas and McGillick.

Keywords: animal models; cardiorespiratory function; clinical trials; newborn respiratory outcome; resuscitation and respiratory support; sustained inflation; ventilation

References

  1. Pediatr Res. 2014 Jun;75(6):682-8 - PubMed
  2. Early Hum Dev. 2019 Mar;130:17-21 - PubMed
  3. J Matern Fetal Neonatal Med. 2017 Jun;30(11):1273-1278 - PubMed
  4. Am J Physiol Lung Cell Mol Physiol. 2020 Mar 1;318(3):L525-L532 - PubMed
  5. Pediatr Res. 2011 Jul;70(1):56-60 - PubMed
  6. Pediatr Res. 2016 Jun;79(6):916-21 - PubMed
  7. Arch Dis Child Fetal Neonatal Ed. 2019 Jan;104(1):F102-F107 - PubMed
  8. Early Hum Dev. 2015 Jan;91(1):71-5 - PubMed
  9. JAMA. 2019 Mar 26;321(12):1165-1175 - PubMed
  10. Am J Respir Cell Mol Biol. 2016 Feb;54(2):263-72 - PubMed
  11. Emerg Med Australas. 2011 Aug;23(4):428-35 - PubMed
  12. BMC Pediatr. 2020 Apr 1;20(1):144 - PubMed
  13. Pediatr Res. 2009 Sep;66(3):295-300 - PubMed
  14. Pediatr Pulmonol. 2018 Oct;53(10):1407-1413 - PubMed
  15. Anesth Analg. 2015 Jun;120(6):1337-51 - PubMed
  16. PLoS One. 2014 Nov 24;9(11):e113473 - PubMed
  17. Am J Respir Crit Care Med. 2019 Sep 1;200(5):608-616 - PubMed
  18. BMC Pediatr. 2014 Feb 15;14:43 - PubMed
  19. Am J Physiol Lung Cell Mol Physiol. 2015 Nov 15;309(10):L1138-49 - PubMed
  20. Neonatology. 2015;108(1):1-7 - PubMed
  21. Pediatr Res. 2009 May;65(5):537-41 - PubMed
  22. Pediatr Res. 2017 Oct;82(4):712-720 - PubMed
  23. Arch Dis Child Fetal Neonatal Ed. 2016 May;101(3):F266-71 - PubMed
  24. Am J Perinatol. 2019 Jul;36(S 02):S110-S114 - PubMed
  25. Pediatrics. 2015 Feb;135(2):e457-64 - PubMed
  26. Am J Respir Crit Care Med. 2019 Sep 1;200(5):531-532 - PubMed
  27. Neonatology. 2011;99(1):45-50 - PubMed
  28. Am J Physiol Lung Cell Mol Physiol. 2013 Sep 15;305(6):L446-53 - PubMed
  29. Cochrane Database Syst Rev. 2015 Jul 01;(7):CD004953 - PubMed
  30. Pediatrics. 2007 Aug;120(2):322-9 - PubMed
  31. Reprod Health. 2013;10 Suppl 1:S2 - PubMed
  32. PLoS One. 2016 Jan 14;11(1):e0146574 - PubMed
  33. JAMA Pediatr. 2020 Apr 1;174(4):e195897 - PubMed
  34. Pediatr Res. 2014 Feb;75(2):288-94 - PubMed
  35. Acta Paediatr. 1994 Oct;83(10):1017-21 - PubMed
  36. Resuscitation. 2015 Oct;95:249-63 - PubMed
  37. Arch Dis Child Fetal Neonatal Ed. 2005 Sep;90(5):F406-10 - PubMed
  38. PLoS One. 2015 Sep 25;10(9):e0138964 - PubMed
  39. Respir Res. 2009 Mar 10;10:19 - PubMed
  40. Resuscitation. 2017 Feb;111:68-73 - PubMed
  41. Acta Paediatr. 2005 Mar;94(3):303-9 - PubMed
  42. Arch Dis Child Fetal Neonatal Ed. 2018 Mar;103(2):F112-F119 - PubMed
  43. Pediatr Res. 2016 Jul;80(1):85-91 - PubMed
  44. J Appl Physiol (1985). 2005 Oct;99(4):1453-61 - PubMed
  45. Semin Neonatol. 2003 Dec;8(6):441-8 - PubMed
  46. J Pediatr. 1981 Oct;99(4):635-9 - PubMed
  47. J Appl Physiol (1985). 2015 Apr 1;118(7):890-7 - PubMed
  48. Acta Paediatr. 2005 Dec;94(12):1764-70 - PubMed
  49. J Neonatal Perinatal Med. 2017;10(4):409-417 - PubMed
  50. Arch Dis Child Fetal Neonatal Ed. 2013 May;98(3):F222-7 - PubMed
  51. Cochrane Database Syst Rev. 2020 Mar 18;3:CD004953 - PubMed
  52. J Pediatr. 1979 Dec;95(6):1031-6 - PubMed
  53. Am J Respir Cell Mol Biol. 2019 Nov;61(5):631-642 - PubMed
  54. J Appl Physiol (1985). 2014 Feb 1;116(3):251-8 - PubMed
  55. Arch Dis Child Fetal Neonatal Ed. 2019 Nov;104(6):F587-F593 - PubMed
  56. J Perinatol. 2016 Jun;36(6):443-7 - PubMed
  57. Am J Physiol Lung Cell Mol Physiol. 2017 Jan 1;312(1):L32-L41 - PubMed
  58. Arch Dis Child Fetal Neonatal Ed. 2017 Nov;102(6):F525-F531 - PubMed

Publication Types