Display options
Share it on

Front Microbiol. 2020 Nov 03;11:584525. doi: 10.3389/fmicb.2020.584525. eCollection 2020.

A 3D Printed Device for Easy and Reliable Quantification of Fungal Chemotropic Growth.

Frontiers in microbiology

Carolin Schunke, Stefanie Pöggeler, Daniela Elisabeth Nordzieke

Affiliations

  1. Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg August University Göttingen, Göttingen, Germany.

PMID: 33224121 PMCID: PMC7669831 DOI: 10.3389/fmicb.2020.584525

Abstract

Chemical gradients are surrounding living organisms in all habitats of life. Microorganisms, plants and animals have developed specific mechanisms to sense such gradients. Upon perception, chemical gradients can be categorized either as favorable, like nutrients or hormones, or as disadvantageous, resulting in a clear orientation toward the gradient and avoiding strategies, respectively. Being sessile organisms, fungi use chemical gradients for their orientation in the environment. Integration of this data enables them to successfully explore nutrient sources, identify probable plant or animal hosts, and to communicate during sexual reproduction or early colony development. We have developed a 3D printed device allowing a highly standardized, rapid and low-cost investigation of chemotropic growth processes in fungi. Since the 3D printed device is placed on a microscope slide, detailed microscopic investigations and documentation of the chemotropic process is possible. Using this device, we provide evidence that germlings derived from oval conidia of the hemibiotrophic plant pathogen

Copyright © 2020 Schunke, Pöggeler and Nordzieke.

Keywords: 3D printed device; Colletotrichum graminicola; chemotropism; filamentous fungi; glucose

References

  1. Curr Opin Microbiol. 2002 Dec;5(6):580-5 - PubMed
  2. Plant Dis. 1999 Jul;83(7):596-608 - PubMed
  3. Curr Biol. 2019 Jan 21;29(2):217-228.e4 - PubMed
  4. Biomicrofluidics. 2013 Aug 27;7(4):44129 - PubMed
  5. Biosci Biotechnol Biochem. 2016 Sep;80(9):1693-9 - PubMed
  6. Curr Opin Microbiol. 2009 Aug;12(4):350-7 - PubMed
  7. Methods Enzymol. 2016;570:19-45 - PubMed
  8. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8332-6 - PubMed
  9. Sci Rep. 2017 Mar 15;7:44365 - PubMed
  10. Biomicrofluidics. 2018 Mar 30;12(2):024113 - PubMed
  11. Fungal Genet Biol. 2019 Dec;133:103276 - PubMed
  12. BMC Microbiol. 2016 May 23;16:94 - PubMed
  13. Anal Chem. 2003 Jul 15;75(14):3581-6 - PubMed
  14. Appl Environ Microbiol. 2008 Feb;74(3):823-32 - PubMed
  15. FEMS Microbiol Rev. 2008 Nov;32(6):1010-32 - PubMed
  16. Eukaryot Cell. 2004 Aug;3(4):919-31 - PubMed
  17. Semin Cell Dev Biol. 2016 Sep;57:76-83 - PubMed
  18. Lab Chip. 2012 Oct 21;12(20):3968-75 - PubMed
  19. PLoS One. 2008;3(12):e3865 - PubMed
  20. Nature. 2015 Nov 26;527(7579):521-4 - PubMed
  21. Fungal Genet Biol. 1999 Jul-Aug;27(2-3):186-98 - PubMed
  22. Nat Microbiol. 2019 Sep;4(9):1443-1449 - PubMed
  23. Semin Cell Dev Biol. 2016 Sep;57:69-75 - PubMed
  24. Lab Chip. 2012 Sep 7;12(17):3127-34 - PubMed
  25. Genetics. 2000 Oct;156(2):513-21 - PubMed
  26. Sci Rep. 2015 Nov 04;5:16111 - PubMed
  27. Nature. 2007 Mar 1;446(7131):46-51 - PubMed
  28. Eukaryot Cell. 2006 Aug;5(8):1287-300 - PubMed
  29. Phytopathology. 2002 Jul;92(7):803-12 - PubMed
  30. Biochem Soc Trans. 2005 Feb;33(Pt 1):291-3 - PubMed
  31. New Phytol. 2019 Dec;224(4):1600-1612 - PubMed
  32. EMBO Rep. 2001 Jul;2(7):574-9 - PubMed
  33. Integr Biol (Camb). 2016 Jun 13;8(6):712-9 - PubMed
  34. Plant Physiol. 2017 Jan;173(1):112-121 - PubMed
  35. Nat Genet. 2012 Sep;44(9):1060-5 - PubMed
  36. Mol Plant Microbe Interact. 2007 Dec;20(12):1555-67 - PubMed

Publication Types