Display options
Share it on

ACS Nano. 2021 Jan 26;15(1):362-376. doi: 10.1021/acsnano.0c06480. Epub 2020 Nov 24.

Microscopic Deformation Modes and Impact of Network Anisotropy on the Mechanical and Electrical Performance of Five-fold Twinned Silver Nanowire Electrodes.

ACS nano

Nadine J Schrenker, Zhuocheng Xie, Peter Schweizer, Marco Moninger, Felix Werner, Nicolas Karpstein, Mirza Mačković, George D Spyropoulos, Manuela Göbelt, Silke Christiansen, Christoph J Brabec, Erik Bitzek, Erdmann Spiecker

Affiliations

  1. Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Interdisciplinary Center for Nanostructured Films (IZNF), Cauerstrasse 3, 91058 Erlangen, Germany.
  2. Department of Materials Science and Engineering, Institute I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 5, 91058 Erlangen, Germany.
  3. Institute of Physical Metallurgy and Metal Physics, RWTH Aachen University, Kopernikusstr. 14, 52074, Aachen, Germany.
  4. Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg and ZAE Bayern: Bavarian Center for Applied Energy Research, Martensstrasse 7, 91058 Erlangen, Germany.
  5. Max-Planck Institute for the Science of Light, Staudtstrasse 2, 91058 Erlangen, Germany.
  6. Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI-EerN), Immerwahrstrasse 2, 91058 Erlangen, Germany.

PMID: 33231422 PMCID: PMC7844834 DOI: 10.1021/acsnano.0c06480

Abstract

Silver nanowire (AgNW) networks show excellent optical, electrical, and mechanical properties, which make them ideal candidates for transparent electrodes in flexible and stretchable devices. Various coating strategies and testing setups have been developed to further improve their stretchability and to evaluate their performance. Still, a comprehensive microscopic understanding of the relationship between mechanical and electrical failure is missing. In this work, the fundamental deformation modes of five-fold twinned AgNWs in anisotropic networks are studied by large-scale SEM straining tests that are directly correlated with corresponding changes in the resistance. A pronounced effect of the network anisotropy on the electrical performance is observed, which manifests itself in a one order of magnitude lower increase in resistance for networks strained perpendicular to the preferred wire orientation. Using a scale-bridging microscopy approach spanning from NW networks to single NWs to atomic-scale defects, we were able to identify three fundamental deformation modes of NWs, which together can explain this behavior: (i) correlated tensile fracture of NWs, (ii) kink formation due to compression of NWs in transverse direction, and (iii) NW bending caused by the interaction of NWs in the strained network. A key observation is the extreme deformability of AgNWs in compression. Considering HRTEM and MD simulations, this behavior can be attributed to specific defect processes in the five-fold twinned NW structure leading to the formation of NW kinks with grain boundaries combined with V-shaped surface reconstructions, both counteracting NW fracture. The detailed insights from this microscopic study can further improve fabrication and design strategies for transparent NW network electrodes.

Keywords: buckling; five-fold twinning; kinks; molecular dynamics; silver nanowire; transmission electron microscopy; transparent electrode

References

  1. Nanoscale. 2019 Nov 21;11(43):20356-20378 - PubMed
  2. ACS Omega. 2019 Jan 22;4(1):1816-1823 - PubMed
  3. ACS Appl Mater Interfaces. 2020 Mar 18;12(11):13040-13050 - PubMed
  4. Soft Matter. 2013;9(33):8062-8070 - PubMed
  5. Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697 - PubMed
  6. Nanotechnology. 2019 Jul 12;30(28):285501 - PubMed
  7. Small. 2019 May;15(21):e1805094 - PubMed
  8. Nanotechnology. 2012 May 11;23(18):185201 - PubMed
  9. Sci Rep. 2018 Sep 21;8(1):14170 - PubMed
  10. Langmuir. 2016 Jan 12;32(1):366-73 - PubMed
  11. ACS Appl Mater Interfaces. 2019 May 15;11(19):17836-17842 - PubMed
  12. Small. 2012 Oct 8;8(19):2986-93 - PubMed
  13. Sci Rep. 2012;2:987 - PubMed
  14. Phys Rev Lett. 2002 Aug 19;89(8):085502 - PubMed
  15. Nat Commun. 2012 Apr 03;3:770 - PubMed
  16. Adv Mater. 2018 Jun;30(25):e1706938 - PubMed
  17. Nanoscale. 2019 Aug 1;11(30):14294-14302 - PubMed
  18. Nanoscale. 2017 Jan 19;9(3):1307-1314 - PubMed
  19. ACS Appl Mater Interfaces. 2017 Mar 29;9(12):10865-10873 - PubMed
  20. Nanotechnology. 2010 Feb 26;21(8):85708 - PubMed
  21. ACS Appl Mater Interfaces. 2019 Oct 30;11(43):40232-40242 - PubMed
  22. Nanotechnology. 2017 Sep 20;28(38):385701 - PubMed
  23. Nat Commun. 2014;5:3033 - PubMed
  24. Adv Mater. 2012 Feb 21;24(8):1073-7 - PubMed
  25. Nano Lett. 2015 Dec 9;15(12):7933-42 - PubMed
  26. Nano Lett. 2006 Mar;6(3):468-72 - PubMed
  27. Nano Lett. 2011 Sep 14;11(9):3816-20 - PubMed
  28. ACS Nano. 2017 Dec 26;11(12):12500-12508 - PubMed
  29. Nanoscale. 2015 Oct 21;7(39):16434-41 - PubMed
  30. ACS Nano. 2017 Aug 22;11(8):7587-7599 - PubMed
  31. ACS Nano. 2014 Feb 25;8(2):1629-38 - PubMed
  32. Nanoscale. 2019 Jan 23;11(4):1520-1530 - PubMed
  33. Nano Lett. 2017 Oct 11;17(10):6258-6266 - PubMed
  34. Phys Chem Chem Phys. 2015 Mar 28;17(12):8106-12 - PubMed
  35. Nano Lett. 2009 Sep;9(9):3214-9 - PubMed
  36. Small. 2016 Nov;12(44):6052-6075 - PubMed
  37. Nano Lett. 2015 Jun 10;15(6):4037-44 - PubMed
  38. ACS Nano. 2019 Nov 26;13(11):12500-12510 - PubMed
  39. ACS Nano. 2009 Jul 28;3(7):1767-74 - PubMed
  40. ACS Appl Mater Interfaces. 2018 Jan 24;10(3):3046-3057 - PubMed
  41. Adv Healthc Mater. 2018 Jan;7(1): - PubMed

Publication Types