Display options
Share it on

Pharmaceutics. 2020 Nov 28;12(12). doi: 10.3390/pharmaceutics12121162.

Application of Focus Variation Microscopy and Dissolution Imaging in Understanding the Behaviour of Hydrophilic Matrices.

Pharmaceutics

Adam Ward, Benedict Brown, Karl Walton, Peter Timmins, Barbara R Conway, Kofi Asare-Addo

Affiliations

  1. Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK.
  2. EPSRC Future Metrology Hub, University of Huddersfield, Huddersfield HD1 3DH, UK.

PMID: 33260657 PMCID: PMC7759878 DOI: 10.3390/pharmaceutics12121162

Abstract

Hydrophilic matrix systems can be found in a wide range of extended release pharmaceutical formulations. The main principle of these systems is that upon contact with water, the hydrophilic component swells to form a hydrated gel layer which controls drug release. The following work demonstrates an explorative study into the use of dissolution imaging and focus variation microscopy with hydrophilic polymers. This study investigated the surface properties of xanthan gum (XG), polyethylene oxide (PEO), and hypromellose (hydroxypropyl methylcellulose, HPMC) compacts with each of these three hydrophilic polymers from one of each classification of natural, semi-synthetic, or synthetic polymer using a focus variation instrument. The auto correlation length (S

Keywords: focus variation; hypromellose; polyethylene oxide; surface dissolution imaging; swelling; xanthan gum

References

  1. Int J Pharm. 2018 Nov 15;551(1-2):290-299 - PubMed
  2. Pharm Dev Technol. 1999 May;4(2):241-50 - PubMed
  3. Colloids Surf B Biointerfaces. 2013 Nov 1;111:486-92 - PubMed
  4. Int J Pharm. 1999 Oct 28;189(1):19-28 - PubMed
  5. Int J Pharm. 2012 Sep 15;434(1-2):133-9 - PubMed
  6. Eur J Pharm Biopharm. 2020 Jul;152:202-209 - PubMed
  7. Int J Pharm X. 2019 Apr 10;1:100013 - PubMed
  8. Pharm Res. 1997 Aug;14(8):1066-72 - PubMed
  9. Pharm Res. 1994 May;11(5):733-7 - PubMed
  10. Pharm Res. 2010 Dec;27(12):2614-23 - PubMed
  11. Int J Pharm. 2018 Jan 30;536(1):440-449 - PubMed
  12. Pharm Res. 1995 Sep;12(9):1376-9 - PubMed
  13. Int J Pharm. 2017 Sep 15;530(1-2):440-454 - PubMed
  14. J Pharm Sci. 2013 Aug;102(8):2599-607 - PubMed
  15. J Control Release. 2010 Oct 15;147(2):232-41 - PubMed
  16. J Pharm Sci. 1995 Mar;84(3):303-6 - PubMed
  17. Int J Pharm. 2020 Jul 30;585:119567 - PubMed
  18. Biomaterials. 1993;14(2):83-90 - PubMed
  19. Int J Pharm. 2012 May 10;427(2):345-53 - PubMed
  20. Mol Pharm. 2020 Apr 6;17(4):1090-1099 - PubMed
  21. Int J Pharm. 2013 Dec 5;457(2):521-6 - PubMed
  22. J Pharm Sci. 2015 May;104(5):1658-67 - PubMed
  23. Pharmaceutics. 2020 Sep 18;12(9): - PubMed
  24. Eur J Pharm Sci. 2013 Jan 23;48(1-2):72-9 - PubMed
  25. Eur J Pharm Biopharm. 2019 Apr;137:148-163 - PubMed
  26. Ther Deliv. 2016 Aug;7(8):553-72 - PubMed
  27. J Pharm Sci. 1996 May;85(5):537-40 - PubMed
  28. Pharm Res. 2011 May;28(5):1065-73 - PubMed
  29. Colloids Surf B Biointerfaces. 2013 Apr 1;104:54-60 - PubMed
  30. J Pharm Sci. 2006 Oct;95(10):2145-57 - PubMed
  31. Pharm Dev Technol. 2000;5(3):339-46 - PubMed
  32. Pharm Res. 2013 May;30(5):1328-37 - PubMed
  33. Int J Pharm. 2020 Apr 15;579:119172 - PubMed
  34. Pharm Res. 1996 Mar;13(3):376-80 - PubMed
  35. Int J Pharm. 2017 Sep 15;530(1-2):139-144 - PubMed
  36. Adv Exp Med Biol. 1997;423:129-35 - PubMed
  37. Biomaterials. 2002 Nov;23(21):4241-8 - PubMed

Publication Types