Display options
Share it on

Neurol Res Pract. 2019 Jul 03;1:22. doi: 10.1186/s42466-019-0025-1. eCollection 2019.

New alternative splicing variants of the ATXN2 transcript.

Neurological research and practice

Isabel Lastres-Becker, David Nonis, Joachim Nowock, Georg Auburger

Affiliations

  1. Experimental Neurology, Goethe University Medical Faculty, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
  2. Present address: Department of Biochemistry, Faculty of Medicine, Universidad Autonoma of Madrid, Madrid, Spain.

PMID: 33324888 PMCID: PMC7650068 DOI: 10.1186/s42466-019-0025-1

Abstract

BACKGROUND: Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant disorder with progressive degeneration of cerebellar Purkinje cells and selective loss of neurons in the brainstem. This neurodegenerative disorder is caused by the expansion of a polyglutamine domain in ataxin-2. Ataxin-2 is composed of 1312 amino acids, has a predicted molecular weight of 150-kDa and is widely expressed in neuronal and non-neuronal tissues. To date, the putative functions of ataxin-2 on mRNA translation and endocytosis remain ill-defined. Differential splicing with a lack of exons 10 and 21 was described in humans, and additional splicing of exon 11 in mice. In this study, we observed that the molecular size of transfected full-length wild-type ataxin-2 (22 glutamines) is different from endogenous ataxin-2 and that this variation could not be explained by the previously published splice variants alone.

METHODS: Quantitative immunoblots and qualitative reverse-transcriptase polymerase-chain-reaction (RT-PCR) were used to characterize isoform variants, before sequencing was employed for validation.

RESULTS: We report the characterization of further splice variants of ataxin-2 in different human cell lines and in mouse and human brain. Using RT-PCR from cell lines HeLa, HEK293 and COS-7 throughout the open reading frame of ataxin-2 together with PCR-sequencing, we found novel splice variants lacking exon 12 and exon 24. These findings were corroborated in murine and human brain. The splice variants were also found in human skin fibroblasts from SCA2 patients and controls, indicating that the polyglutamine expansion does not abolish the splicing.

CONCLUSIONS: Given that Ataxin-2 interacts with crucial splice modulators such as TDP-43 and modulates the risk of Amyotrophic Lateral Sclerosis, its own splice isoforms may become relevant in brain tissue to monitor the RNA processing during disease progression and neuroprotective therapy.

© The Author(s) 2019.

Keywords: ALS; ATXN2; Alternative splicing; PolyQ expansion; Spinocerebellar Ataxia type 2

Conflict of interest statement

Competing interestsThe authors declare that they have no competing interests.

References

  1. Neuropathol Appl Neurobiol. 2008 Oct;34(5):479-91 - PubMed
  2. Neuropathol Appl Neurobiol. 2005 Apr;31(2):127-40 - PubMed
  3. Brain. 2015 Nov;138(Pt 11):3316-26 - PubMed
  4. PLoS One. 2012;7(5):e37985 - PubMed
  5. Hum Mol Genet. 2006 Aug 15;15(16):2523-32 - PubMed
  6. Prog Neurobiol. 2013 May;104:38-66 - PubMed
  7. Brain. 2006 Jun;129(Pt 6):1357-70 - PubMed
  8. Acta Neuropathol. 2005 Jun;109(6):617-31 - PubMed
  9. Hum Mol Genet. 2008 May 15;17(10):1465-81 - PubMed
  10. Exp Neurol. 2009 Jan;215(1):110-8 - PubMed
  11. Hum Mol Genet. 2000 May 22;9(9):1303-13 - PubMed
  12. Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):E655-62 - PubMed
  13. Nat Genet. 1996 Nov;14(3):269-76 - PubMed
  14. Hum Mol Genet. 2003 Jul 1;12(13):1485-96 - PubMed
  15. Hum Mol Genet. 2007 Oct 15;16 Spec No. 2:R115-23 - PubMed
  16. Cerebellum. 2008;7(2):115-24 - PubMed
  17. Mol Cell. 2014 Jul 17;55(2):186-98 - PubMed
  18. Cerebellum. 2012 Sep;11(3):749-60 - PubMed
  19. Nat Genet. 1996 Nov;14(3):285-91 - PubMed
  20. Neurobiol Dis. 2012 Jan;45(1):356-61 - PubMed
  21. Cell Death Dis. 2019 Feb 20;10(3):173 - PubMed
  22. Brain Res Rev. 2007 Feb;53(2):235-49 - PubMed
  23. Neuropathol Appl Neurobiol. 2004 Aug;30(4):402-14 - PubMed
  24. Neuropathol Appl Neurobiol. 2013 Oct;39(6):634-43 - PubMed
  25. Neuropathology. 2006 Aug;26(4):346-51 - PubMed
  26. Cerebellum. 2011 Jun;10(2):245-53 - PubMed
  27. Annu Rev Neurosci. 2007;30:575-621 - PubMed
  28. BMC Res Notes. 2014 Jul 15;7:453 - PubMed
  29. Nat Genet. 1996 Nov;14(3):277-84 - PubMed
  30. Trends Neurosci. 2017 Aug;40(8):507-516 - PubMed
  31. Neuropathol Appl Neurobiol. 2006 Dec;32(6):635-49 - PubMed
  32. PLoS One. 2012;7(11):e50134 - PubMed
  33. Cell. 2015 Mar 12;160(6):1125-34 - PubMed
  34. J Mol Biol. 2005 Feb 11;346(1):203-14 - PubMed
  35. Cell Signal. 2008 Oct;20(10):1725-39 - PubMed
  36. Nature. 2011 May 25;474(7351):380-4 - PubMed
  37. J Mol Neurosci. 2013 Sep;51(1):68-81 - PubMed
  38. Gene. 2001 Apr 4;267(1):89-93 - PubMed
  39. Nucleic Acids Res. 2014 Jun;42(11):7319-29 - PubMed
  40. Curr Top Dev Biol. 2006;75:25-71 - PubMed
  41. Hum Mol Genet. 1998 Aug;7(8):1301-9 - PubMed
  42. Nat Genet. 2011 May 29;43(7):706-11 - PubMed
  43. PLoS Genet. 2012;8(8):e1002920 - PubMed
  44. Nature. 2010 Aug 26;466(7310):1069-75 - PubMed
  45. Neurology. 2004 Oct 12;63(7):1258-63 - PubMed
  46. Brain Pathol. 2017 May;27(3):345-355 - PubMed
  47. Genomics. 1998 Feb 1;47(3):359-64 - PubMed
  48. Brain. 2003 Oct;126(Pt 10):2257-72 - PubMed
  49. Ann Neurol. 2016 Oct;80(4):600-15 - PubMed
  50. Nature. 2017 Apr 20;544(7650):367-371 - PubMed

Publication Types