Display options
Share it on

Cell Death Discov. 2020 Nov 19;6(1):128. doi: 10.1038/s41420-020-00361-4.

Role of IRE1α in podocyte proteostasis and mitochondrial health.

Cell death discovery

José R Navarro-Betancourt, Joan Papillon, Julie Guillemette, Takao Iwawaki, Chen-Fang Chung, Andrey V Cybulsky

Affiliations

  1. Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada.
  2. Department of Life Science, Kanazawa Medical University, Uchinada, Japan.
  3. Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada. [email protected].

PMID: 33298866 PMCID: PMC7677398 DOI: 10.1038/s41420-020-00361-4

Abstract

Glomerular epithelial cell (GEC)/podocyte proteostasis is dysregulated in glomerular diseases. The unfolded protein response (UPR) is an adaptive pathway in the endoplasmic reticulum (ER) that upregulates proteostasis resources. This study characterizes mechanisms by which inositol requiring enzyme-1α (IRE1α), a UPR transducer, regulates proteostasis in GECs. Mice with podocyte-specific deletion of IRE1α (IRE1α KO) were produced and nephrosis was induced with adriamycin. Compared with control, IRE1α KO mice had greater albuminuria. Adriamycin increased glomerular ER chaperones in control mice, but this upregulation was impaired in IRE1α KO mice. Likewise, autophagy was blunted in adriamycin-treated IRE1α KO animals, evidenced by reduced LC3-II and increased p62. Mitochondrial ultrastructure was markedly disrupted in podocytes of adriamycin-treated IRE1α KO mice. To pursue mechanistic studies, GECs were cultured from glomeruli of IRE1α flox/flox mice and IRE1α was deleted by Cre-lox recombination. In GECs incubated with tunicamycin, deletion of IRE1α attenuated upregulation of ER chaperones, LC3 lipidation, and LC3 transcription, compared with control GECs. Deletion of IRE1α decreased maximal and ATP-linked oxygen consumption, as well as mitochondrial membrane potential. In summary, stress-induced chaperone production, autophagy, and mitochondrial health are compromised by deletion of IRE1α. The IRE1α pathway is cytoprotective in glomerular disease associated with podocyte injury and ER stress.

References

  1. Cytometry A. 2004 Oct;61(2):162-9 - PubMed
  2. EMBO J. 2011 Mar 2;30(5):894-905 - PubMed
  3. Kidney Int. 2013 Jul;84(1):25-33 - PubMed
  4. Am J Physiol Renal Physiol. 2014 Jun 15;306(12):F1410-7 - PubMed
  5. Genome Res. 2013 Nov;23(11):1862-73 - PubMed
  6. Nat Commun. 2015 Mar 10;6:6496 - PubMed
  7. Trends Biotechnol. 2019 Jul;37(7):761-774 - PubMed
  8. Cold Spring Harb Perspect Biol. 2019 Sep 3;11(9): - PubMed
  9. Biophys J. 2009 Feb 18;96(4):1388-98 - PubMed
  10. J Am Soc Nephrol. 2011 Jan;22(1):176-86 - PubMed
  11. Autophagy. 2015 Nov 2;11(11):1956-1977 - PubMed
  12. J Cell Sci. 2011 Jul 1;124(Pt 13):2143-52 - PubMed
  13. J Biol Chem. 2013 Jan 11;288(2):859-72 - PubMed
  14. Am J Physiol Renal Physiol. 2014 Jun 1;306(11):F1372-80 - PubMed
  15. Sci Rep. 2017 Jun 30;7(1):4442 - PubMed
  16. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):E869-78 - PubMed
  17. Annu Rev Biochem. 2016 Jun 2;85:161-92 - PubMed
  18. Aging (Albany NY). 2018 Jan 22;10(1):15-16 - PubMed
  19. Discoveries (Craiova). 2017 Jan-Mar;5(1): - PubMed
  20. Cell Rep. 2020 Feb 18;30(7):2332-2348.e10 - PubMed
  21. Nephrology (Carlton). 2011 Jan;16(1):30-8 - PubMed
  22. Nat Rev Mol Cell Biol. 2012 Jan 18;13(2):89-102 - PubMed
  23. Front Endocrinol (Lausanne). 2014 Dec 15;5:209 - PubMed
  24. Mol Cell Biochem. 2009 Apr;324(1-2):131-8 - PubMed
  25. Nat Cell Biol. 2019 Jun;21(6):755-767 - PubMed
  26. J Gen Virol. 2017 May;98(5):1027-1039 - PubMed
  27. Cold Spring Harb Protoc. 2015 Sep 01;2015(9):pdb.prot086298 - PubMed
  28. Trends Biochem Sci. 2014 May;39(5):245-54 - PubMed
  29. Mol Cell Biol. 2003 Nov;23(21):7448-59 - PubMed
  30. Annu Rev Physiol. 2012;74:299-323 - PubMed
  31. Nucleic Acids Res. 2011 Jan;39(Database issue):D712-7 - PubMed
  32. J Vis Exp. 2010 Dec 06;(46): - PubMed
  33. J Biol Chem. 2003 Sep 5;278(36):33928-35 - PubMed
  34. PLoS One. 2013 Oct 18;8(10):e76941 - PubMed
  35. Nature. 2016 Jan 21;529(7586):326-35 - PubMed
  36. Trends Cell Biol. 2018 Jul;28(7):523-540 - PubMed
  37. J Clin Invest. 2010 Apr;120(4):1084-96 - PubMed
  38. Autophagy. 2016;12(1):1-222 - PubMed
  39. Cell Death Differ. 2003 Jun;10(6):709-17 - PubMed
  40. Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361 - PubMed
  41. Nucleic Acids Res. 2019 Jan 8;47(D1):D100-D105 - PubMed
  42. Cell Rep. 2013 Apr 25;3(4):1279-92 - PubMed
  43. J Biol Chem. 2009 May 15;284(20):13843-55 - PubMed
  44. PLoS One. 2019 May 16;14(5):e0216426 - PubMed
  45. Sci Rep. 2019 Nov 7;9(1):16229 - PubMed
  46. Kidney Int. 2004 Nov;66(5):1901-6 - PubMed
  47. Nat Biotechnol. 2008 Mar;26(3):303-4 - PubMed
  48. Am J Nephrol. 2016;43(5):348-56 - PubMed
  49. J Am Soc Nephrol. 2015 May;26(5):1040-52 - PubMed
  50. Kidney Int. 2019 Sep;96(3):656-673 - PubMed
  51. Lab Invest. 2020 Jul;100(7):945-958 - PubMed
  52. Mol Biol Cell. 2017 Jun 15;28(12):1636-1651 - PubMed
  53. Nat Rev Nephrol. 2017 Nov;13(11):681-696 - PubMed
  54. Am J Physiol Renal Physiol. 2020 Jun 1;318(6):F1377-F1390 - PubMed
  55. Exp Biol Med (Maywood). 2015 Apr;240(4):467-76 - PubMed
  56. Nat Rev Mol Cell Biol. 2020 Aug;21(8):421-438 - PubMed
  57. J Biol Chem. 2012 Jun 8;287(24):20321-32 - PubMed
  58. Cell Death Dis. 2018 Feb 28;9(3):332 - PubMed
  59. FEBS J. 2017 Jan;284(2):183-195 - PubMed
  60. Mol Cell. 2018 Jan 18;69(2):169-181 - PubMed
  61. Am J Physiol Renal Physiol. 2017 Jul 1;313(1):F74-F84 - PubMed
  62. Nature. 2018 Jun;558(7708):136-140 - PubMed
  63. Front Cell Dev Biol. 2019 Jul 02;7:114 - PubMed

Publication Types

Grant support