Display options
Share it on

Front Neuroinform. 2020 Nov 30;14:581897. doi: 10.3389/fninf.2020.581897. eCollection 2020.

A Tensor-Based Framework for rs-fMRI Classification and Functional Connectivity Construction.

Frontiers in neuroinformatics

Ali Noroozi, Mansoor Rezghi

Affiliations

  1. Department of Computer Science, Tarbiat Modares University, Tehran, Iran.

PMID: 33328948 PMCID: PMC7734298 DOI: 10.3389/fninf.2020.581897

Abstract

Recently, machine learning methods have gained lots of attention from researchers seeking to analyze brain images such as Resting-State Functional Magnetic Resonance Imaging (rs-fMRI) to obtain a deeper understanding of the brain and such related diseases, for example, Alzheimer's disease. Finding the common patterns caused by a brain disorder through analysis of the functional connectivity (FC) network along with discriminating brain diseases from normal controls have long been the two principal goals in studying rs-fMRI data. The majority of FC extraction methods calculate the FC matrix for each subject and then use simple techniques to combine them and obtain a general FC matrix. In addition, the state-of-the-art classification techniques for finding subjects with brain disorders also rely on calculating an FC for each subject, vectorizing, and feeding them to the classifier. Considering these problems and based on multi-dimensional nature of the data, we have come up with a novel tensor framework in which a general FC matrix is obtained without the need to construct an FC matrix for each sample. This framework also allows us to reduce the dimensionality and create a novel discriminant function that rather than using FCs works directly with each sample, avoids vectorization in any step, and uses the test data in the training process without forcing any prior knowledge of its label into the classifier. Extensive experiments using the ADNI dataset demonstrate that our proposed framework effectively boosts the fMRI classification performance and reveals novel connectivity patterns in Alzheimer's disease at its early stages.

Copyright © 2020 Noroozi and Rezghi.

Keywords: Alzheimer's disease (AD) classification; dimension reduction; functional connectivity; high order singular value decomposition; tensor

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Neuroimage. 2018 Sep;178:370-384 - PubMed
  2. Neuroimage. 2013 Aug 1;76:332-44 - PubMed
  3. IEEE Trans Image Process. 2013 Jul;22(7):2723-36 - PubMed
  4. Alzheimers Dement. 2007 Jul;3(3):186-91 - PubMed
  5. Front Comput Neurosci. 2013 Nov 22;7:169 - PubMed
  6. Brain. 2015 Aug;138(Pt 8):2438-50 - PubMed
  7. Front Neurosci. 2018 Aug 06;12:525 - PubMed
  8. Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):927-932 - PubMed
  9. Neuroimage. 2020 May 1;211:116604 - PubMed
  10. Neuroimage. 2013 Dec;83:937-50 - PubMed
  11. Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1690-1695 - PubMed
  12. Hum Brain Mapp. 2020 Jul;41(10):2808-2826 - PubMed
  13. Aging Dis. 2015 Nov 17;6(6):437-43 - PubMed
  14. PLoS One. 2015 Feb 13;10(2):e0115573 - PubMed
  15. Neural Netw. 2019 Jun;114:119-135 - PubMed
  16. Cancer. 1950 Jan;3(1):32-5 - PubMed
  17. Neural Plast. 2016;2016:8501693 - PubMed
  18. IEEE Trans Biomed Eng. 2019 Mar;66(3):695-709 - PubMed
  19. Neuroimage. 2007 Apr 1;35(2):488-500 - PubMed
  20. IEEE Trans Med Imaging. 2020 May;39(5):1419-1429 - PubMed
  21. IEEE Trans Biomed Eng. 2013 Aug;60(8):2332-8 - PubMed
  22. Front Neurol. 2016 Sep 19;7:132 - PubMed
  23. Brain. 2005 Apr;128(Pt 4):773-87 - PubMed
  24. IEEE Trans Med Imaging. 2020 Feb;39(2):478-487 - PubMed
  25. Int J Mol Sci. 2013 Jan 10;14(1):1310-22 - PubMed
  26. Neuroimage. 2002 Jan;15(1):273-89 - PubMed
  27. Neuroimage. 2011 May 15;56(2):766-81 - PubMed
  28. Front Neurosci. 2015 Sep 01;9:307 - PubMed
  29. Neuropsychol Rev. 2014 Mar;24(1):49-62 - PubMed
  30. Curr Opin Neurobiol. 2019 Apr;55:48-54 - PubMed
  31. IEEE Trans Med Imaging. 2020 Apr;39(4):985-996 - PubMed
  32. Inf Process Med Imaging. 2013;23:256-67 - PubMed
  33. Nat Neurosci. 2019 Nov;22(11):1751-1760 - PubMed
  34. Neuroimage. 2010 Mar;50(1):81-98 - PubMed
  35. IEEE Trans Biomed Eng. 2014 Feb;61(2):576-89 - PubMed
  36. Magn Reson Med. 2006 Aug;56(2):411-21 - PubMed
  37. Neuroimage. 2012 Nov 15;63(3):1712-9 - PubMed
  38. Neuroimage. 2011 Apr 1;55(3):856-67 - PubMed
  39. Front Neurosci. 2019 Jan 10;12:1018 - PubMed
  40. Front Psychol. 2014 Feb 07;5:74 - PubMed
  41. Neurology. 2004 Jun 8;62(11):1990-5 - PubMed
  42. Neurobiol Aging. 2015 Jan;36(1):27-32 - PubMed
  43. Neuroimage. 2016 Feb 15;127:242-256 - PubMed
  44. J Neurosci Methods. 2018 Oct 1;308:21-33 - PubMed
  45. Front Syst Neurosci. 2010 May 14;4:13 - PubMed
  46. Front Neuroinform. 2018 Sep 07;12:58 - PubMed
  47. IEEE Trans Med Imaging. 2020 May;39(5):1524-1534 - PubMed
  48. Brain Connect. 2011;1(1):13-36 - PubMed
  49. Hum Brain Mapp. 2019 Dec 15;40(18):5424-5442 - PubMed
  50. PLoS One. 2010 Nov 01;5(11):e13788 - PubMed
  51. Neuroimage. 2015 Jan 1;104:430-6 - PubMed
  52. Neuroimage. 2010 Apr 15;50(3):935-49 - PubMed
  53. Cereb Cortex. 2012 Apr;22(4):854-64 - PubMed
  54. Hum Brain Mapp. 2016 Sep;37(9):3282-96 - PubMed
  55. Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10341-6 - PubMed
  56. Eur Radiol. 2016 Jan;26(1):244-53 - PubMed
  57. Neuroimage. 2012 Aug 15;62(2):1257-66 - PubMed
  58. Front Aging Neurosci. 2018 Nov 09;10:366 - PubMed
  59. PLoS One. 2019 Feb 22;14(2):e0212582 - PubMed
  60. Brain Imaging Behav. 2016 Jun;10(2):342-56 - PubMed
  61. Int Psychogeriatr. 2016 Apr;28(4):529-36 - PubMed
  62. IEEE Trans Biomed Eng. 2015 Jun;62(6):1623-34 - PubMed
  63. Brain. 2018 Jan 1;141(1):37-47 - PubMed
  64. Neuroimage. 2018 Feb 15;167:62-72 - PubMed
  65. Cereb Cortex. 2014 Mar;24(3):663-76 - PubMed
  66. IEEE Trans Image Process. 2017 Sep;26(9):4499-4508 - PubMed

Publication Types