Display options
Share it on

Invest New Drugs. 2021 Jun;39(3):644-657. doi: 10.1007/s10637-020-01040-y. Epub 2020 Dec 09.

Drug-repositioning screening identified fludarabine and risedronic acid as potential therapeutic compounds for malignant pleural mesothelioma.

Investigational new drugs

Irene Dell'Anno, Sarah A Martin, Marcella Barbarino, Alessandra Melani, Roberto Silvestri, Maria Bottaro, Elisa Paolicchi, Alda Corrado, Monica Cipollini, Ombretta Melaiu, Antonio Giordano, Luca Luzzi, Federica Gemignani, Stefano Landi

Affiliations

  1. Department of Biology, Genetic Unit, University of Pisa, 56126, Pisa, Italy.
  2. Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
  3. Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy.
  4. Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
  5. Immuno-Oncology Laboratory, Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165, Rome, Italy.
  6. Department of Medicine, Surgery and Neurosciences, Siena University Hospital, 53100, Siena, Italy.
  7. Department of Biology, Genetic Unit, University of Pisa, 56126, Pisa, Italy. [email protected].

PMID: 33300108 PMCID: PMC8068714 DOI: 10.1007/s10637-020-01040-y

Abstract

Objectives Malignant pleural mesothelioma (MPM) is an occupational disease mainly due to asbestos exposure. Effective therapies for MPM are lacking, making this tumour type a fatal disease. Materials and Methods In order to meet this need and in view of a future "drug repositioning" approach, here we screened five MPM (Mero-14, Mero-25, IST-Mes2, NCI-H28 and MSTO-211H) and one SV40-immortalized mesothelial cell line (MeT-5A) as a non-malignant model, with a library of 1170 FDA-approved drugs. Results Among several potential compounds, we found that fludarabine (F-araA) and, to a lesser extent, risedronic acid (RIS) were cytotoxic in MPM cells, in comparison to the non-malignant Met-5A cells. In particular, F-araA reduced the proliferation and the colony formation ability of the MPM malignant cells, in comparison to the non-malignant control cells, as demonstrated by proliferation and colony formation assays, in addition to measurement of the phospho-ERK/total-ERK ratio. We have shown that the response to F-araA was not dependent upon the expression of DCK and NT5E enzymes, nor upon their functional polymorphisms (rs11544786 and rs2295890, respectively). Conclusion This drug repositioning screening approach has identified that F-araA could be therapeutically active against MPM cells, in addition to other tumour types, by inhibiting STAT1 expression and nucleic acids synthesis. Further experiments are required to fully investigate this.

Keywords: Antimetabolite; Bisphosphonate; Drug repositioning; Fludarabine; Mesothelioma; Risedronic acid

References

  1. van der Velden DL, Hoes LR, van der Wijngaart H, van Berge Henegouwen JM, van Werkhoven E, Roepman P, Schilsky RL, de Leng WWJ, Huitema ADR, Nuijen B, Nederlof PM, van Herpen CML, de Groot DJA, Devriese LA, Hoeben A, de Jonge MJA, Chalabi M, Smit EF, de Langen AJ, Mehra N, Labots M, Kapiteijn E, Sleijfer S, Cuppen E, Verheul HMW, Gelderblom H, Voest EE (2019) The drug rediscovery protocol facilitates the expanded use of existing anticancer drugs. Nature 574(7776):127–131. https://doi.org/10.1038/s41586-019-1600-x - PubMed
  2. Boyer A, Pasquier E, Tomasini P, Ciccolini J, Greillier L, Andre N, Barlesi F, Mascaux C (2018) Drug repurposing in malignant pleural mesothelioma: a breath of fresh air? Eur Respir Rev 27(147):170098. https://doi.org/10.1183/16000617.0098-2017 - PubMed
  3. Ahmed I, Tipu SA, Ishtiaq S (2013) Malignant Mesothelioma. Park J Med Sci 29(6):1433–1438. https://doi.org/10.12669/pjms.296.3938 - PubMed
  4. Baas P, Fennell D, Kerr KM, van Schil P, Haas RL, Peters S, ESMO Guidelines Committee (2015) Malignant pleural mesothelioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 26(Suppl. 5):v31–v39. https://doi.org/10.1093/annonc/mdv199 - PubMed
  5. Zucali PA (2017) Target therapy: new drugs or new combinations of drugs in malignant pleural mesothelioma. J Thorac Dis 10(Suppl. 2):S311–S321. https://doi.org/10.21037/jtd.2017.10.131 - PubMed
  6. Rokicki W, Rokicki M, Wojtacha J, Rydel MK (2017) Malignant mesothelioma as a difficult interdisciplinary problem. Kardiochir Torakochirurgia Pol 14(4):263–267. https://doi.org/10.5114/kitp.2017.72232 - PubMed
  7. Berzenji L, Van Schil P (2018) Multimodality treatment of malignant pleural mesothelioma. F1000Res 7(F1000 Faculty Rev):1681. https://doi.org/10.12688/f1000research.15796.1 - PubMed
  8. Barbarino M, Cesari D, Intruglio R, Indovina P, Namagerdi A, Bertolino FM, Bottaro M, Rahmani D, Bellan C, Giordano A (2018) Possible repurposing of pyrvinium pamoate for the treatment of mesothelioma: a pre-clinical assessment. J Cell Physiol 233(9):7391–7401. https://doi.org/10.1002/jcp.26579 - PubMed
  9. Barbarino M, Cesari D, Bottaro M, Luzzi L, Namagerdi A, Bertolino FM, Bellan C, Proietti F, Somma P, Micheli M, Santi MM, Guazzo R, Mutti L, Pirtoli L, Paladini P, Indovina P, Giordano A (2020) PRMT5 silencing selectively affects MTAP-deleted mesothelioma: in vitro evidence of a novel promising approach. J Cell Mol Med 24(10):5565–5577. https://doi.org/10.1111/jcmm.15213 - PubMed
  10. Mitchell DY, Eusebio RA, Sacco-Gibson NA, Pallone KA, Kelly SC, Nesbitt JD, Brezovic CP, Thompson GA, Powefl JH (2000) Dose-proportional pharmacokinetics of risedronate on single-dose oral administration to healthy volunteers. J Clin Pharmacol 40(3):258–265. https://doi.org/10.1177/00912700022008928 - PubMed
  11. Ogura Y, Gonsho A, Cyong JC, Orimo H (2004) Clinical trial of risedronate in Japanese volunteers: single and multiple oral dose studies. J Bone Miner Metab 22(2):111–119. https://doi.org/10.1007/s00774-003-0458-y - PubMed
  12. Frank DA, Mahajan S, Ritz J (1999) Fludarabine-induced immunosuppression is associated with inhibition of STAT1 signaling. Nat Med 5(4):444–447. https://doi.org/10.1038/7445 - PubMed
  13. Hillmen P (2004) Future prospects for fludarabine-containing regimens in the treatment of hematological cancers. Hematol J 5(1):S76–S86. https://doi.org/10.1038/sj.thj.6200385 - PubMed
  14. Montillo M, Ricci F, Tedeschi A (2006) Role of fludarabine in hematological malignancies. Expert Rev Anticancer Ther 6(9):1141–1161. https://doi.org/10.1586/14737140.6.9.1141 - PubMed
  15. Robak P, Robak T (2013) Older and new purine nucleoside analogs for patients with acute leukemias. Cancer Treat Rev 39(8):851–861. https://doi.org/10.1016/j.ctrv.2013.03.006 - PubMed
  16. Lukenbill J, Kalaycio M (2013) Fludarabine: a review of the clear benefits and potential harms. Leuk Res 37(9):986–994. https://doi.org/10.1016/j.leukres.2013.05.004 - PubMed
  17. Farrell KB, Karpeisky A, Thamm DH, Zinnen S (2018) Bisphosphonate conjugation for bone specific drug targeting. Bone Rep 9:47–60. https://doi.org/10.1016/j.bonr.2018.06.007 - PubMed
  18. Clézardin P (2002) The antitumor potential of bisphosphonates. Semin Oncol 29(6):33–42. https://doi.org/10.1053/sonc.2002.37420 - PubMed
  19. Lipton A (2004) Toward new horizons: the future of bisphosphonate therapy. Oncologist 9(Suppl. 4):38–47. https://doi.org/10.1634/theoncologist.9-90004-38 - PubMed
  20. Gnant M, Clézardin P (2012) Direct and indirect anticancer activity of bisphosphonates: a brief review of published literature. Cancer Treat Rev 38(5):407–415. https://doi.org/10.1016/j.ctrv.2011.09.003 - PubMed
  21. O'Carrigan B, Wong MHF, Willson ML, Stockler MR, Pavlakis N, Goodwin A, Cochrane Breast Cancer Group (2017) Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst Rev 10(10):CD003474. https://doi.org/10.1002/14651858.CD003474.pub4 - PubMed
  22. Macherey S, Monsef I, Jahn F, Jordan K, Yuen KK, Heidenreich A, Skoetz N, Cochrane Urology Group (2017) Bisphosphonates for advanced prostate cancer. Cochrane Database Syst Rev 12(12):CD006250. https://doi.org/10.1002/14651858.CD006250.pub2 - PubMed
  23. Mahtani R, Khan R, Jahanzeb M (2011) The potential application of zoledronic acid as anticancer therapy in patients with non-small-cell lung cancer. Clin Lung Cancer 12(1):26–32. https://doi.org/10.3816/CLC.2011.n.003 - PubMed
  24. de Fonseka D, Morley A, Stadon L, Keenan E, Walker S, Smith S, Harvey JE, Cox RA, Dangoor A, Comins C, Rogers C, Edey A, Addeo A, Maskell NA (2018) Zoledronic acid in the management of mesothelioma - a feasibility study (Zol-a trial): study protocol for a randomised controlled trial. Trials 19(1):467. https://doi.org/10.1186/s13063-018-2851-9 - PubMed
  25. Jamil MO et al (2017) A pilot study of zoledronic acid in the treatment of patients with advanced malignant pleural mesothelioma. Lung Cancer (Auckl) 8:39–44. https://doi.org/10.2147/LCTT.S135802 - PubMed
  26. Plosker GL, Figgitt DP (2003) Oral Fludarabine. Drugs 63(21):2317–2323. https://doi.org/10.2165/00003495-200363210-00004 - PubMed
  27. Galmarini CM, Mackey JR, Dumontet C (2001) Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia 15(6):875–890. https://doi.org/10.1038/sj.leu.2402114 - PubMed
  28. Dumontet C, Fabianowska-Majewska K, Mantincic D, Callet Bauchu E, Tigaud I, Gandhi V, Lepoivre M, Peters GJ, Rolland MO, Wyczechowska D, Fang X, Gazzo S, Voorn DA, Vanier-Viornery A, Mackey J (1999) Common resistance mechanisms to deoxynucleoside analogues in variants of the human erythroleukaemic line K562. Br J Haematol 106(1):78–85. https://doi.org/10.1046/j.1365-2141.1999.01509.x - PubMed
  29. Spasokoukotskaja T, Sasvári-Székely M, Keszler G, Albertioni F, Eriksson S, Staub M (1999) Treatment of normal and malignant cells with nucleoside analogues and etoposide enhances deoxycytidine kinase activity. Eur J Cancer 35(13):1862–1867. https://doi.org/10.1016/s0959-8049(99)00223-3 - PubMed
  30. Friedberg JW, Dong DA, Li S, Kim H, Stephans K, Noonan K, Neuberg D, Gribben JG, Fisher DC, Freedman AS, Takvorian T, Jurgens R, Battle TE, Frank DA (2004) Oral fludarabine has significant activity in patients with previously untreated chronic lymphocytic leukemia, and leads to increased STAT1 levels in vivo. Leuk Res 28(2):139–147. https://doi.org/10.1016/s0145-2126(03)00213-3 - PubMed
  31. Martinez-Lostao L, Briones J, Forné I, Martinez-Gallo M, Ferrer B, Sierra J, Rodriguez-Sanchez JL, Juarez C (2005) Role of the STAT1 pathway in apoptosis induced by fludarabine and JAK kinase inhibitors in B-cell chronic lymphocytic leukemia. Leuk Lymphoma 46(3):435–442. https://doi.org/10.1080/10428190400018398 - PubMed
  32. Torella D, Curcio A, Gasparri C, Galuppo V, Serio DD, Surace FC, Cavaliere AL, Leone A, Coppola C, Ellison GM, Indolfi C (2007) Fludarabine prevents smooth muscle proliferation in vitro and neointimal hyperplasia in vivo through specific inhibition of STAT-1 activation. Am J Physiol Heart Circ Physiol 292(6):H2935–H2943. https://doi.org/10.1152/ajpheart.00887.2006 - PubMed
  33. Feng Z, Zheng W, Tang Q, Cheng L, Li H, Ni W, Pan X (2017) Fludarabine inhibits STAT1-mediated up-regulation of caspase-3 expression in dexamethasone-induced osteoblasts apoptosis and slows the progression of steroid-induced avascular necrosis of the femoral head in rats. Apoptosis 22(8):1001–1012. https://doi.org/10.1007/s10495-017-1383-1 - PubMed
  34. Lin J, Qi W, Chen K, Yan Y, Li X, Feng Z, Pan X (2019) Downregulating STAT1/caspase-3 signaling with fludarabine to alleviate progression in a rat model of steroid-induced avascular necrosis of the femoral head. J Biochem Mol Toxicol 33(4):e22265. https://doi.org/10.1002/jbt.22265 - PubMed
  35. Sikorski K, Czerwoniec A, Bujnicki JM, Wesoly J, Bluyssen HAR (2011) STAT1 as a novel therapeutical target in pro-atherogenic signal integration of IFNγ, TLR4 and IL-6 in vascular disease. Cytokine Growth Factor Rev 22(4):211–219. https://doi.org/10.1016/j.cytogfr.2011.06.003 - PubMed
  36. Meissl K, Macho-Maschler S, Müller M, Strobl B (2017) The good and the bad faces of STAT1 in solid tumours. Cytokine 89:12–20. https://doi.org/10.1016/j.cyto.2015.11.011 - PubMed
  37. Szelag M, Sikorski K, Czerwoniec A, Szatkowska K, Wesoly J, Bluyssen HAR (2013) In silico simulations of STAT1 and STAT3 inhibitors predict SH2 domain cross-binding specificity. Eur J Pharmacol 720(1–3):38–48. https://doi.org/10.1016/j.ejphar.2013.10.055 - PubMed
  38. Wesoly J, Szweykowska-Kulinska Z, Bluyssen HAR (2007) STAT activation and differential complex formation dictate selectivity of interferon responses. Acta Biochim Pol 54(1):27–38 - PubMed
  39. Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3(9):651–662. https://doi.org/10.1038/nrm909 - PubMed
  40. Spriggs D, Robbins G, Mitchell T, Kufe D (1986) Incorporation of 9−/3-d-arabinofuranosyl-2-fluoroadenine into HL-60 cellular RNA and DNA. Biochem Pharmacol 35(2):247–252. https://doi.org/10.1016/0006-2952(86)90521-6 - PubMed
  41. Gandhi V, Plunkett W (2002) Cellular and clinical pharmacology of fludarabine. Clin Pharmacokinet 41(2):93–103. https://doi.org/10.2165/00003088-200241020-00002 - PubMed

Publication Types