Display options
Share it on

Biology (Basel). 2020 Dec 05;9(12). doi: 10.3390/biology9120447.

Collimated Microbeam Reveals that the Proportion of Non-Damaged Cells in Irradiated Blastoderm Determines the Success of Development in Medaka (.

Biology

Takako Yasuda, Tomoo Funayama, Kento Nagata, Duolin Li, Takuya Endo, Qihui Jia, Michiyo Suzuki, Yuji Ishikawa, Hiroshi Mitani, Shoji Oda

Affiliations

  1. Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan.
  2. Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Gunma 370-1292, Japan.
  3. National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan.

PMID: 33291358 PMCID: PMC7762064 DOI: 10.3390/biology9120447

Abstract

It has been widely accepted that prenatal exposure to ionizing radiation (IR) can affect embryonic and fetal development in mammals, depending on dose and gestational age of the exposure, however, the precise machinery underlying the IR-induced disturbance of embryonic development is still remained elusive. In this study, we examined the effects of gamma-ray irradiation on blastula embryos of medaka and found transient delay of brain development even when they hatched normally with low dose irradiation (2 and 5 Gy). In contrast, irradiation of higher dose of gamma-rays (10 Gy) killed the embryos with malformations before hatching. We then conducted targeted irradiation of blastoderm with a collimated carbon-ion microbeam. When a part (about 4, 10 and 25%) of blastoderm cells were injured by lethal dose (50 Gy) of carbon-ion microbeam irradiation, loss of about 10% or less of blastoderm cells induced only the transient delay of brain development and the embryos hatched normally, whereas embryos with about 25% of their blastoderm cells were irradiated stopped development at neurula stage and died. These findings strongly suggest that the developmental disturbance in the IR irradiated embryos is determined by the proportion of severely injured cells in the blastoderm.

Keywords: blastoderm; brain damage; embryogenesis; medaka; microbeam irradiation; pre-implantation period; teratogenesis

References

  1. J Radiat Res. 2008 Jan;49(1):71-82 - PubMed
  2. Cancer Res. 2002 Mar 15;62(6):1876-83 - PubMed
  3. Nature. 2013 Aug 1;500(7460):39-44 - PubMed
  4. PLoS One. 2016 Jul 01;11(7):e0158236 - PubMed
  5. Curr Opin Cell Biol. 2017 Oct;48:106-112 - PubMed
  6. Biochim Biophys Acta. 2015 Jun;1849(6):626-36 - PubMed
  7. Mech Dev. 1996 Nov;60(1):33-44 - PubMed
  8. Development. 2014 Oct;141(20):3834-41 - PubMed
  9. Cell Biol Int. 2019 May;43(5):516-527 - PubMed
  10. Ann ICRP. 2007;37(2-4):1-332 - PubMed
  11. J Radiat Res. 2009 Jul;50(4):371-5 - PubMed
  12. BMC Cell Biol. 2009 Jun 17;10:46 - PubMed
  13. Stem Cells Dev. 2013 Mar 1;22(5):750-7 - PubMed
  14. Zygote. 1997 May;5(2):153-75 - PubMed
  15. J Radiat Res. 2007 Mar;48(2):121-8 - PubMed
  16. Nucleic Acids Res. 2019 Dec 2;47(21):11476 - PubMed
  17. Development. 1997 Aug;124(16):3185-95 - PubMed
  18. J Comp Neurol. 2004 Aug 23;476(3):219-39 - PubMed
  19. Gene Expr Patterns. 2003 Mar;3(1):43-7 - PubMed
  20. Radiat Res. 2006 Feb;165(2):155-64 - PubMed
  21. Nat Rev Mol Cell Biol. 2007 Sep;8(9):729-40 - PubMed
  22. Dev Biol. 1975 Feb;42(2):211-21 - PubMed
  23. J Radiat Res. 2006 Nov;47(3-4):295-303 - PubMed
  24. Oncogene. 1998 Jan 22;16(3):311-20 - PubMed
  25. PLoS One. 2015 Jun 10;10(6):e0127325 - PubMed
  26. Sci Rep. 2016 Jun 27;6:28112 - PubMed
  27. Birth Defects Res C Embryo Today. 2007 Sep;81(3):177-82 - PubMed
  28. Mech Dev. 2004 Jul;121(7-8):605-18 - PubMed
  29. Int J Mol Sci. 2017 Jul 04;18(7): - PubMed
  30. Mech Dev. 2004 Jul;121(7-8):599-604 - PubMed
  31. Cell. 1993 Nov 19;75(4):817-25 - PubMed
  32. J Radiat Res. 2017 Nov 1;58(6):881-886 - PubMed
  33. Methods. 2001 Dec;25(4):402-8 - PubMed
  34. Dev Biol. 1999 May 15;209(2):409-33 - PubMed
  35. Mech Dev. 2004 Jul;121(7-8):895-902 - PubMed
  36. Cell Cycle. 2014;13(24):3927-37 - PubMed
  37. J Vis Exp. 2019 Mar 19;(145): - PubMed
  38. J Cell Physiol. 2009 Sep;220(3):586-92 - PubMed
  39. Teratology. 1999 Apr;59(4):222-6 - PubMed
  40. Dev Cell. 2013 Jul 15;26(1):19-30 - PubMed
  41. Dev Genes Evol. 1998 Dec;208(10):595-602 - PubMed
  42. J Cell Physiol Suppl. 1954 May;43(Suppl. 1):103-49 - PubMed

Publication Types

Grant support