Display options
Share it on

Front Neurosci. 2020 Dec 10;14:579373. doi: 10.3389/fnins.2020.579373. eCollection 2020.

Sural Nerve Perfusion in Mice.

Frontiers in neuroscience

Anete Dudele, Peter Mondrup Rasmussen, Leif Østergaard

Affiliations

  1. Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
  2. The International Diabetic Neuropathy Consortium, Aarhus University Hospital, Aarhus, Denmark.
  3. Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark.

PMID: 33362454 PMCID: PMC7758475 DOI: 10.3389/fnins.2020.579373

Abstract

Peripheral nerve function is metabolically demanding and nerve energy failure has been implicated in the onset and development of diabetic peripheral neuropathy and neuropathic pain conditions. Distal peripheral nerve oxygen supply relies on the distribution of red blood cells (RBCs) in just a few, nearby capillary-sized vessels and is therefore technically challenging to characterize. We developed an approach to characterize distal sural nerve hemodynamics in anesthetized, adult male mice using

Copyright © 2020 Dudele, Rasmussen and Østergaard.

Keywords: hindlimb temperature; mice; nerve blood flow; red blood cell velocity; sural nerve; two-photon microscopy

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. J Neurol Sci. 1999 Feb 1;163(1):17-24 - PubMed
  2. Microcirculation. 2019 Apr;26(3):e12516 - PubMed
  3. J Appl Physiol (1985). 2001 Oct;91(4):1619-26 - PubMed
  4. J Comput Neurosci. 2010 Aug;29(1-2):5-11 - PubMed
  5. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  6. IEEE Trans Biomed Eng. 1999 Oct;46(10):1230-9 - PubMed
  7. J Appl Physiol (1985). 2011 Sep;111(3):818-24 - PubMed
  8. Brain Behav. 2017 Jul 12;7(8):e00763 - PubMed
  9. BMC Bioinformatics. 2017 Nov 29;18(1):529 - PubMed
  10. Nat Rev Neurol. 2017 Mar;13(3):135-147 - PubMed
  11. BMC Neurosci. 2016 Jun 24;17(1):39 - PubMed
  12. Elife. 2019 Aug 09;8: - PubMed
  13. Sci Rep. 2019 Jan 17;9(1):186 - PubMed
  14. Brain. 1984 Sep;107 ( Pt 3):935-50 - PubMed
  15. Muscle Nerve. 2018 Jun;57(6):884-895 - PubMed
  16. J Cereb Blood Flow Metab. 2017 Mar;37(3):1046-1059 - PubMed
  17. J Neurol Sci. 1997 May 1;148(1):7-13 - PubMed
  18. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15741-6 - PubMed
  19. J Physiol. 1984 Feb;347:513-24 - PubMed
  20. Dis Model Mech. 2018 Apr 26;11(4): - PubMed
  21. Muscle Nerve. 1984 Sep;7(7):524-34 - PubMed
  22. Nat Commun. 2014 Dec 08;5:5734 - PubMed
  23. J Cereb Blood Flow Metab. 2016 Dec;36(12):2072-2086 - PubMed
  24. Am J Physiol. 1990 Apr;258(4 Pt 2):H1240-3 - PubMed
  25. Anesthesiology. 1999 Sep;91(3):677-80 - PubMed
  26. J Cereb Blood Flow Metab. 2008 May;28(5):961-72 - PubMed
  27. J Phys Ther Sci. 2014 Feb;26(2):263-7 - PubMed
  28. Diabetes. 1997 Sep;46 Suppl 2:S31-7 - PubMed
  29. PLoS One. 2014 Jan 30;9(1):e88067 - PubMed
  30. J Cereb Blood Flow Metab. 2018 Feb;38(2):290-303 - PubMed
  31. Diabetologia. 2015 Apr;58(4):666-77 - PubMed
  32. Neural Regen Res. 2018 Jan;13(1):58-61 - PubMed
  33. J Neurosci. 2015 Feb 25;35(8):3346-59 - PubMed
  34. Stroke. 2008 Jul;39(7):2029-36 - PubMed
  35. Front Neurosci. 2014 Oct 08;8:307 - PubMed
  36. Br Med J (Clin Res Ed). 1986 Oct 25;293(6554):1053-4 - PubMed

Publication Types