Display options
Share it on

Front Physiol. 2020 Dec 11;11:610983. doi: 10.3389/fphys.2020.610983. eCollection 2020.

Lactate Metabolism and Satellite Cell Fate.

Frontiers in physiology

Minas Nalbandian, Zsolt Radak, Masaki Takeda

Affiliations

  1. Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
  2. Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary.
  3. Graduate School of Sports and Health Science, Doshisha University, Kyoto, Japan.

PMID: 33362583 PMCID: PMC7759562 DOI: 10.3389/fphys.2020.610983

Abstract

Lactate is one of the metabolic products of glycolysis. It is widely accepted as an important energy source for many cell types and more recently has been proposed to actively participate in cell-cell communication. Satellite cells (SCs), which are adult skeletal muscle stem cells, are the main players of the skeletal muscle regeneration process. Recent studies have proposed a metabolic switch to increase glycolysis in activated SCs. Moreover, lactate has been shown to affect SCs and myoblasts

Copyright © 2020 Nalbandian, Radak and Takeda.

Keywords: lactate; metabolism; muscle regeneration; muscle stem cell; skeletal muscle

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Cell Stem Cell. 2018 Dec 6;23(6):859-868.e5 - PubMed
  2. Biology (Basel). 2019 Jun 10;8(2): - PubMed
  3. J Cell Sci. 2018 Jul 27;131(14): - PubMed
  4. NPJ Regen Med. 2018 Dec 21;3:24 - PubMed
  5. FASEB J. 2007 Aug;21(10):2602-12 - PubMed
  6. FEBS J. 2013 Sep;280(17):4004-13 - PubMed
  7. IUBMB Life. 2012 Feb;64(2):109-19 - PubMed
  8. Nature. 2019 Oct;574(7779):575-580 - PubMed
  9. iScience. 2019 Dec 20;22:507-518 - PubMed
  10. Appl Physiol Nutr Metab. 2016 Jun;41(6):695-8 - PubMed
  11. Front Cell Dev Biol. 2019 Dec 06;7:312 - PubMed
  12. J Physiol. 1999 Jun 15;517 ( Pt 3):633-42 - PubMed
  13. Genes (Basel). 2019 Mar 19;10(3): - PubMed
  14. Physiology (Bethesda). 2011 Aug;26(4):214-24 - PubMed
  15. Development. 2019 Apr 11;146(12): - PubMed
  16. Cell Stem Cell. 2018 Oct 4;23(4):530-543.e9 - PubMed
  17. Dev Biol. 2018 Jan 15;433(2):200-209 - PubMed
  18. Cell Metab. 2015 Mar 3;21(3):392-402 - PubMed
  19. Nature. 2014 Jun 19;510(7505):393-6 - PubMed
  20. J Physiol. 2000 Dec 1;529 Pt 2:285-93 - PubMed
  21. Cell Stem Cell. 2012 May 4;10(5):515-9 - PubMed
  22. Semin Cell Dev Biol. 2017 Dec;72:19-32 - PubMed
  23. Stem Cells. 2007 Oct;25(10):2448-59 - PubMed
  24. J Cereb Blood Flow Metab. 2009 Jun;29(6):1121-9 - PubMed
  25. Nature. 2014 Sep 25;513(7519):559-63 - PubMed
  26. Am J Physiol. 1997 Aug;273(2 Pt 1):E239-46 - PubMed
  27. FEBS J. 2015 May;282(9):1745-67 - PubMed
  28. Stem Cell Reports. 2020 Oct 13;15(4):926-940 - PubMed
  29. J Biophys Biochem Cytol. 1961 Feb;9:493-5 - PubMed
  30. EMBO J. 2017 Jul 3;36(13):1946-1962 - PubMed
  31. Nutrients. 2019 Apr 17;11(4): - PubMed
  32. Stem Cell Res. 2014 May;12(3):742-53 - PubMed
  33. Cell. 2000 Sep 15;102(6):777-86 - PubMed
  34. Mol Aspects Med. 2013 Apr-Jun;34(2-3):337-49 - PubMed
  35. Cell Metab. 2020 Jun 2;31(6):1136-1153.e7 - PubMed
  36. PLoS One. 2012;7(3):e33418 - PubMed
  37. Exp Biol Med (Maywood). 2018 Jan;243(2):118-128 - PubMed
  38. Am J Physiol. 1999 May;276(5):E843-8 - PubMed
  39. J Biol Chem. 2006 Apr 7;281(14):9030-7 - PubMed
  40. Nat Rev Mol Cell Biol. 2014 Apr;15(4):243-56 - PubMed
  41. Chem Rev. 2015 Mar 25;115(6):2350-75 - PubMed
  42. Annu Rev Cell Dev Biol. 2002;18:747-83 - PubMed
  43. Physiol Rev. 2004 Jan;84(1):209-38 - PubMed
  44. Cell Metab. 2011 Aug 3;14(2):151-3 - PubMed
  45. Cell Rep. 2020 Jul 28;32(4):107964 - PubMed
  46. Nat Rev Mol Cell Biol. 2012 Mar 22;13(4):251-62 - PubMed
  47. Eur J Appl Physiol. 2001 Nov;86(1):6-11 - PubMed
  48. Biochem J. 2000 Aug 15;350 Pt 1:219-27 - PubMed
  49. Biology (Basel). 2016 Oct 08;5(4): - PubMed
  50. Cold Spring Harb Perspect Biol. 2012 Feb 01;4(2): - PubMed
  51. Trends Endocrinol Metab. 2019 Mar;30(3):177-188 - PubMed
  52. Front Cell Dev Biol. 2014 Jan 30;2:1 - PubMed
  53. J Appl Physiol (1985). 2015 Mar 15;118(6):742-9 - PubMed
  54. FASEB J. 2017 Jun;31(6):2562-2575 - PubMed
  55. Science. 2009 May 22;324(5930):1076-80 - PubMed
  56. EMBO J. 2014 Dec 1;33(23):2782-97 - PubMed
  57. IUBMB Life. 2012 Jan;64(1):1-9 - PubMed
  58. Nature. 2017 Nov 2;551(7678):115-118 - PubMed
  59. Cell. 2007 Jun 1;129(5):859-61 - PubMed
  60. Nature. 2000 Jan 6;403(6765):41-5 - PubMed
  61. Biochim Biophys Acta. 2016 Oct;1863(10):2481-97 - PubMed
  62. Cell Rep. 2013 Jul 11;4(1):189-204 - PubMed
  63. Cell. 2012 Jan 20;148(1-2):112-25 - PubMed
  64. J Cachexia Sarcopenia Muscle. 2016 Dec;7(5):547-554 - PubMed
  65. Redox Biol. 2020 Aug;35:101454 - PubMed
  66. Cell Stem Cell. 2015 Feb 5;16(2):171-83 - PubMed
  67. Cell. 2007 Jun 1;129(5):999-1010 - PubMed
  68. J Cereb Blood Flow Metab. 2015 Jul;35(7):1069-75 - PubMed
  69. PLoS One. 2012;7(10):e46571 - PubMed
  70. Mol Biol Cell. 2007 Apr;18(4):1397-409 - PubMed
  71. Nat Rev Mol Cell Biol. 2017 Feb;18(2):90-101 - PubMed
  72. Cell Rep. 2019 Jun 25;27(13):3939-3955.e6 - PubMed

Publication Types