Display options
Share it on

Dev Dyn. 2021 May;250(5):684-700. doi: 10.1002/dvdy.293. Epub 2021 Jan 26.

OTX2 regulates CFTR expression during endoderm differentiation and occupies 3' cis-regulatory elements.

Developmental dynamics : an official publication of the American Association of Anatomists

Jenny L Kerschner, Alekh Paranjapye, Monali NandyMazumdar, Shiyi Yin, Shih-Hsing Leir, Ann Harris

Affiliations

  1. Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.

PMID: 33386644 DOI: 10.1002/dvdy.293

Abstract

BACKGROUND: Cell-specific and developmental mechanisms contribute to expression of the cystic fibrosis transmembrane conductance regulator (CFTR) gene; however, its developmental regulation is poorly understood. Here we use human induced pluripotent stem cells differentiated into pseudostratified airway epithelial cells to study these mechanisms.

RESULTS: Changes in gene expression and open chromatin profiles were investigated by RNA-seq and ATAC-seq, and revealed that alterations in CFTR expression are associated with differences in stage-specific open chromatin. Additionally, two novel open chromatin regions, at +19.6 kb and +22.6 kb 3' to the CFTR translational stop signal, were observed in definitive endoderm (DE) cells, prior to an increase in CFTR expression in anterior foregut endoderm (AFE) cells. Chromatin studies in DE and AFE cells revealed enrichment of active enhancer marks and occupancy of OTX2 at these sites in DE cells. Loss of OTX2 in DE cells alters histone modifications across the CFTR locus and results in a 2.5-fold to 5-fold increase in CFTR expression. However, deletion of the +22.6 kb site alone does not affect CFTR expression in DE or AFE cells.

CONCLUSIONS: These results suggest that a network of interacting cis-regulatory elements recruit OTX2 to the locus to impact CFTR expression during early endoderm differentiation.

© 2021 American Association of Anatomists.

Keywords: airway epithelial development; cis-regulatory elements; cystic fibrosis; gene regulation; iPSC differentiation

References

  1. Crawford I, Maloney PC, Zeitlin PL, et al. Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc Natl Acad Sci U S A. 1991;88(20):9262-9266. https://doi.org/10.1073/pnas.88.20.9262. - PubMed
  2. Engelhardt JF, Yankaskas JR, Ernst SA, et al. Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet. 1992;2(3):240-248. https://doi.org/10.1038/ng1192-240. - PubMed
  3. Kreda SM, Mall M, Mengos A, et al. Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia. Mol Biol Cell. 2005;16(5):2154-2167. https://doi.org/10.1091/mbc.e04-11-1010. - PubMed
  4. Montoro DT, Haber AL, Biton M, et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature. 2018;560(7718):319-324. https://doi.org/10.1038/s41586-018-0393-7. - PubMed
  5. Plasschaert LW, Zilionis R, Choo-Wing R, et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature. 2018;560(7718):377-381. https://doi.org/10.1038/s41586-018-0394-6. - PubMed
  6. Harris A, Chalkley G, Goodman S, Coleman L. Expression of the cystic fibrosis gene in human development. Development. 1991;113(1):305-310. - PubMed
  7. Trezise AE, Chambers JA, Wardle CJ, Gould S, Harris A. Expression of the cystic fibrosis gene in human foetal tissues. Hum Mol Genet. 1993;2(3):213-218. - PubMed
  8. McCarthy VA, Harris A. The CFTR gene and regulation of its expression. Pediatr Pulmonol. 2005;40(1):1-8. https://doi.org/10.1002/ppul.20199. - PubMed
  9. Ott CJ, Blackledge NP, Leir SH, Harris A. Novel regulatory mechanisms for the CFTR gene. Biochem Soc Trans. 2009;37(Pt 4):843-848. https://doi.org/10.1042/BST0370843. - PubMed
  10. Gillen AE, Harris A. Transcriptional regulation of CFTR gene expression. Front Biosci (Elite Ed). 2012;4:587-592. https://doi.org/10.2741/401. - PubMed
  11. Gosalia N, Harris A. Chromatin Dynamics in the Regulation of CFTR Expression. Genes (Basel). 2015;6(3):543-558. https://doi.org/10.3390/genes6030543. - PubMed
  12. Swahn H, Harris A. Cell-selective regulation of CFTR gene expression: relevance to gene editing therapeutics. Genes (Basel). 2019;10(3). https://doi.org/10.3390/genes10030235. - PubMed
  13. McCray PB Jr, Wohlford-Lenane CL, Snyder JM. Localization of cystic fibrosis transmembrane conductance regulator mRNA in human fetal lung tissue by in situ hybridization. J Clin Invest. 1992;90(2):619-625. https://doi.org/10.1172/JCI115901. - PubMed
  14. Tizzano EF, Chitayat D, Buchwald M. Cell-specific localization of CFTR mRNA shows developmentally regulated expression in human fetal tissues. Hum Mol Genet. 1993;2(3):219-224. https://doi.org/10.1093/hmg/2.3.219. - PubMed
  15. Gaillard D, Ruocco S, Lallemand A, Dalemans W, Hinnrasky J, Puchelle E. Immunohistochemical localization of cystic fibrosis transmembrane conductance regulator in human fetal airway and digestive mucosa. Pediatr Res. 1994;36(2):137-143. https://doi.org/10.1203/00006450-199408000-00002. - PubMed
  16. Marcorelles P, Montier T, Gillet D, Lagarde N, Ferec C. Evolution of CFTR protein distribution in lung tissue from normal and CF human fetuses. Pediatr Pulmonol. 2007;42(11):1032-1040. https://doi.org/10.1002/ppul.20690. - PubMed
  17. Bedrossian CW, Greenberg SD, Singer DB, Hansen JJ, Rosenberg HS. The lung in cystic fibrosis. A quantitative study including prevalence of pathologic findings among different age groups. Hum Pathol. 1976;7(2):195-204. https://doi.org/10.1016/s0046-8177(76)80023-8. - PubMed
  18. Somers A, Jean JC, Sommer CA, et al. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells. 2010;28(10):1728-1740. https://doi.org/10.1002/stem.495. - PubMed
  19. Wong AP, Bear CE, Chin S, et al. Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat Biotechnol. 2012;30(9):876-882. https://doi.org/10.1038/nbt.2328. - PubMed
  20. Firth AL, Dargitz CT, Qualls SJ, et al. Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2014;111(17):E1723-E1730. https://doi.org/10.1073/pnas.1403470111. - PubMed
  21. Wong AP, Chin S, Xia S, Garner J, Bear CE, Rossant J. Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells. Nat Protoc. 2015;10(3):363-381. https://doi.org/10.1038/nprot.2015.021. - PubMed
  22. Huang SX, Green MD, de Carvalho AT, et al. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nat Protoc. 2015;10(3):413-425. https://doi.org/10.1038/nprot.2015.023. - PubMed
  23. Rankin SA, Han L, McCracken KW, et al. A retinoic acid-hedgehog cascade coordinates mesoderm-inducing signals and endoderm competence during lung specification. Cell Rep. 2016;16(1):66-78. https://doi.org/10.1016/j.celrep.2016.05.060. - PubMed
  24. Hawkins F, Kramer P, Jacob A, et al. Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells. J Clin Invest. 2017;127(6):2277-2294. https://doi.org/10.1172/JCI89950. - PubMed
  25. Kerschner JL, Paranjapye A, Yin S, et al. A functional genomics approach to investigate the differentiation of iPSCs into lung epithelium at air-liquid interface. J Cell Mol Med. 2020;24:9853-9870. https://doi.org/10.1111/jcmm.15568. - PubMed
  26. Ott CJ, Blackledge NP, Kerschner JL, et al. Intronic enhancers coordinate epithelial-specific looping of the active CFTR locus. Proc Natl Acad Sci U S A. 2009;106(47):19934-19939. https://doi.org/10.1073/pnas.0900946106. - PubMed
  27. Zhang Z, Ott CJ, Lewandowska MA, Leir SH, Harris A. Molecular mechanisms controlling CFTR gene expression in the airway. J Cell Mol Med. 2012;16(6):1321-1330. https://doi.org/10.1111/j.1582-4934.2011.01439.x. - PubMed
  28. Zhang Z, Leir SH, Harris A. Immune mediators regulate CFTR expression through a bifunctional airway-selective enhancer. Mol Cell Biol. 2013;33(15):2843-2853. https://doi.org/10.1128/MCB.00003-13. - PubMed
  29. Zhang Z, Leir SH, Harris A. Oxidative stress regulates CFTR gene expression in human airway epithelial cells through a distal antioxidant response element. Am J Respir Cell Mol Biol. 2015;52(3):387-396. https://doi.org/10.1165/rcmb.2014-0263OC. - PubMed
  30. Blackledge NP, Carter EJ, Evans JR, Lawson V, Rowntree RK, Harris A. CTCF mediates insulator function at the CFTR locus. Biochem J. 2007;408(2):267-275. https://doi.org/10.1042/BJ20070429. - PubMed
  31. Blackledge NP, Ott CJ, Gillen AE, Harris A. An insulator element 3′ to the CFTR gene binds CTCF and reveals an active chromatin hub in primary cells. Nucleic Acids Res. 2009;37(4):1086-1094. https://doi.org/10.1093/nar/gkn1056. - PubMed
  32. Haeussler M, Zweig AS, Tyner C, et al. The UCSC genome browser database: 2019 update. Nucleic Acids Res. 2019;47(D1):D853-D858. https://doi.org/10.1093/nar/gky1095. - PubMed
  33. Lambert SA, Jolma A, Campitelli LF, et al. The human transcription factors. Cell. 2018;172(4):650-665. https://doi.org/10.1016/j.cell.2018.01.029. - PubMed
  34. Thomas-Chollier M, Hufton A, Heinig M, et al. Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs. Nat Protoc. 2011;6(12):1860-1869. https://doi.org/10.1038/nprot.2011.409. - PubMed
  35. Furukawa T, Morrow EM, Cepko CL. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell. 1997;91(4):531-541. https://doi.org/10.1016/s0092-8674(00)80439-0. - PubMed
  36. Zhang Y, Miki T, Iwanaga T, et al. Identification, tissue expression, and functional characterization of Otx3, a novel member of the Otx family. J Biol Chem. 2002;277(31):28065-28069. https://doi.org/10.1074/jbc.C100767200. - PubMed
  37. Phylactides M, Rowntree R, Nuthall H, Ussery D, Wheeler A, Harris A. Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene. Eur J Biochem. 2002;269(2):553-559. - PubMed
  38. Tsankov AM, Gu H, Akopian V, et al. Transcription factor binding dynamics during human ES cell differentiation. Nature. 2015;518(7539):344-349. https://doi.org/10.1038/nature14233. - PubMed
  39. Mouchel N, Henstra SA, McCarthy VA, Williams SH, Phylactides M, Harris A. HNF1alpha is involved in tissue-specific regulation of CFTR gene expression. Biochem J. 2004;378(Pt 3):909-918. https://doi.org/10.1042/BJ20031157. - PubMed
  40. Kerschner JL, Gosalia N, Leir SH, Harris A. Chromatin remodeling mediated by the FOXA1/A2 transcription factors activates CFTR expression in intestinal epithelial cells. Epigenetics. 2014;9(4):557-565. https://doi.org/10.4161/epi.27696. - PubMed
  41. Bai RY, Staedtke V, Lidov HG, Eberhart CG, Riggins GJ. OTX2 represses myogenic and neuronal differentiation in medulloblastoma cells. Cancer Res. 2012;72(22):5988-6001. https://doi.org/10.1158/0008-5472.CAN-12-0614. - PubMed
  42. Bunt J, Hasselt NE, Zwijnenburg DA, et al. OTX2 directly activates cell cycle genes and inhibits differentiation in medulloblastoma cells. Int J Cancer. 2012;131(2):E21-E32. https://doi.org/10.1002/ijc.26474. - PubMed
  43. Bunt J, Hasselt NA, Zwijnenburg DA, Koster J, Versteeg R, Kool M. OTX2 sustains a bivalent-like state of OTX2-bound promoters in medulloblastoma by maintaining their H3K27me3 levels. Acta Neuropathol. 2013;125(3):385-394. https://doi.org/10.1007/s00401-012-1069-2. - PubMed
  44. Boulay G, Awad ME, Riggi N, et al. OTX2 activity at distal regulatory elements shapes the chromatin landscape of group 3 medulloblastoma. Cancer Discov. 2017;7(3):288-301. https://doi.org/10.1158/2159-8290.CD-16-0844. - PubMed
  45. Broackes-Carter FC, Mouchel N, Gill D, Hyde S, Bassett J, Harris A. Temporal regulation of CFTR expression during ovine lung development: implications for CF gene therapy. Hum Mol Genet. 2002;11(2):125-131. - PubMed
  46. Adamson DC, Shi Q, Wortham M, et al. OTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas. Cancer Res. 2010;70(1):181-191. https://doi.org/10.1158/0008-5472.CAN-09-2331. - PubMed
  47. Boon K, Eberhart CG, Riggins GJ. Genomic amplification of orthodenticle homologue 2 in medulloblastomas. Cancer Res. 2005;65(3):703-707. - PubMed
  48. Suda Y, Matsuo I, Aizawa S. Cooperation between Otx1 and Otx2 genes in developmental patterning of rostral brain. Mech Dev. 1997;69(1-2):125-141. https://doi.org/10.1016/s0925-4773(97)00161-5. - PubMed
  49. Acampora D, Boyl PP, Martinez-Barbera JP, Annino A, Signore M, Simeone A. Otx genes in evolution: are they involved in instructing the vertebrate brain morphology? J Anat. 2001;199(Pt 1-2):53-62. https://doi.org/10.1046/j.1469-7580.2001.19910053.x. - PubMed
  50. Loh KM, Ang LT, Zhang J, et al. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. Cell Stem Cell. 2014;14(2):237-252. https://doi.org/10.1016/j.stem.2013.12.007. - PubMed
  51. Smith DJ, Nuthall HN, Majetti ME, Harris A. Multiple potential intragenic regulatory elements in the CFTR gene. Genomics. 2000;64(1):90-96. https://doi.org/10.1006/geno.1999.6086. - PubMed
  52. Dostie J, Richmond TA, Arnaout RA, et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 2006;16(10):1299-1309. https://doi.org/10.1101/gr.5571506. - PubMed
  53. Tsui LC, Dorfman R. The cystic fibrosis gene: a molecular genetic perspective. Cold Spring Harb Perspect Med. 2013;3(2):a009472. https://doi.org/10.1101/cshperspect.a009472. - PubMed
  54. Fulcher ML, Gabriel S, Burns KA, Yankaskas JR, Randell SH. Well-differentiated human airway epithelial cell cultures. Methods Mol Med. 2005;107:183-206. https://doi.org/10.1385/1-59259-861-7:183. - PubMed
  55. Randell SH, Fulcher ML, O'Neal W, Olsen JC. Primary epithelial cell models for cystic fibrosis research. Methods Mol Biol. 2011;742:285-310. https://doi.org/10.1007/978-1-61779-120-8_18. - PubMed
  56. Yang R, Browne JA, Eggener SE, Leir SH, Harris A. A novel transcriptional network for the androgen receptor in human epididymis epithelial cells. Mol Hum Reprod. 2018;24(9):433-443. https://doi.org/10.1093/molehr/gay029. - PubMed
  57. NandyMazumdar M, Yin S, Paranjapye A, et al. Looping of upstream cis-regulatory elements is required for CFTR expression in human airway epithelial cells. Nucleic Acids Res. 2020;48(7):3513-3524. https://doi.org/10.1093/nar/gkaa089. - PubMed
  58. Krijger PHL, Geeven G, Bianchi V, Hilvering CRE, de Laat W. 4C-seq from beginning to end: a detailed protocol for sample preparation and data analysis. Methods. 2020;170:17-32. https://doi.org/10.1016/j.ymeth.2019.07.014. - PubMed

Publication Types

Grant support