Display options
Share it on

Bioprocess Biosyst Eng. 2021 Apr;44(4):737-747. doi: 10.1007/s00449-020-02482-7. Epub 2021 Jan 02.

Feeding strategies to optimize vanillin production by Amycolatopsis sp. ATCC 39116.

Bioprocess and biosystems engineering

Rita Valério, Ana R S Bernardino, Cristiana A V Torres, Carla Brazinha, Maria L Tavares, João G Crespo, Maria A M Reis

Affiliations

  1. UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
  2. LAQV-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
  3. UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal. [email protected].
  4. Copam-Companhia Portuguesa de Amidos SA, 2695-722, S. João da Talha, Portugal.

PMID: 33389106 DOI: 10.1007/s00449-020-02482-7

Abstract

The growing consumer demand for natural products led to an increasing interest in vanillin production by biotechnological routes. In this work, the biotechnological vanillin production by Amycolatopsis sp. ATCC 39116 is studied using ferulic acid as precursor, aiming to achieve maximized vanillin productivities. During biotech-vanillin production, the effects of glucose, vanillin and ferulic acid concentrations in the broth proved to be relevant for vanillin productivity. Concerning glucose, its presence in the broth during the production phase avoids vanillin conversion to vanillic acid and, consequently, increases vanillin production. To avoid the accumulation of vanillin up to a toxic concentration level, a multiple-pulse-feeding strategy is implemented, with intercalated vanillin removal from the broth and biomass recovery. This strategy turned out fruitful, leading to 0.46 g L

Keywords: Biotech vanillin; Ferulic acid; Pulse feeding strategy

References

  1. Ma XK, Daugulis AJ (2014a) Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing by-product formation. Bioprocess Biosyst Eng 37:891–899. https://doi.org/10.1007/s00449-013-1060-x - PubMed
  2. Fache M, Boutevin B, Caillol S (2016) Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng 4:35–46. https://doi.org/10.1021/acssuschemeng.5b01344 - PubMed
  3. Evstigneyev EI, Shevchenko SM (2020) Lignin valorization and cleavage of arylether bonds in chemical processing of wood: a mini-review. Wood Sci Technol 54:787–820. https://doi.org/10.1007/s00226-020-01183-4 - PubMed
  4. Bomgardner MM (2016) The problem with vanilla. After vowing to go natural, food brands face a shortage of the favored flavor. Chem Eng News 94(36):38–42 - PubMed
  5. Gallage NJ, Møller BL (2015) Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Mol Plant 8:40–57. https://doi.org/10.1016/j.molp.2014.11.008 - PubMed
  6. FDA (2020) U.S. Food and Drug Administration, Food Additive Status List. http://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm091048.htm#ftnE . Accessed 5 Feb 2020 - PubMed
  7. EUROPEAN_COMMISSION (2008) Regulation (EC) No 1334/2008 of European Parliament and of the council. Off J Eur Union, pp 34–50 - PubMed
  8. Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49:1–8. https://doi.org/10.1007/s002530051129 - PubMed
  9. Priefert H, Rabenshorst J, Steinbuchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314. https://doi.org/10.1007/s002530100687 - PubMed
  10. Buranov AU, Mazza G (2009) Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents. Food Chem 115:1542–1548. https://doi.org/10.1016/j.foodchem.2009.01.059 - PubMed
  11. Gong YY, Yin X, Zhang HM et al (2013) Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing by-product formation. J Ind Microbiol Biotechnol 40:1433–1441. https://doi.org/10.1007/s10295-013-1339-6 - PubMed
  12. Bonnin E, Saulnier L, Brunel M et al (2002) Release of ferulic acid from agroindustrial by-products by the cell wall-degrading enzymes produced by Aspergillus niger I-1472. Enzym Microb Technol 31:1000–1005. https://doi.org/10.1016/S0141-0229(02)00236-3 - PubMed
  13. Gadalkar SM, Rathod VK (2017) Pre-treatment of ferulic acid esterases immobilized on MNPs to enhance the extraction of ferulic acid from defatted rice bran in presence of ultrasound. Biocatal Agric Biotechnol 10:342–351. https://doi.org/10.1016/j.bcab.2017.03.016 - PubMed
  14. Yu P, Maenz DD, McKinnon JJ et al (2002) Release of ferulic acid from oat hulls by Aspergillus ferulic acid esterase and Trichoderma xylanase. J Agric Food Chem 50:1625–1630. https://doi.org/10.1021/jf010984r - PubMed
  15. Long L, Ding D, Han Z et al (2016) Thermotolerant hemicellulolytic and cellulolytic enzymes from Eupenicillium parvum 4–14 display high efficiency upon release of ferulic acid from wheat bran. J Appl Microbiol 121:422–434. https://doi.org/10.1111/jam.13177 - PubMed
  16. Xu F, Sun RC, Sun JX et al (2005) Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse. Anal Chim Acta 552:207–217. https://doi.org/10.1016/j.aca.2005.07.037 - PubMed
  17. Torre P, Aliakbarian B, Rivas B et al (2008) Release of ferulic acid from corn cobs by alkaline hydrolysis. Biochem Eng J 40:500–506. https://doi.org/10.1016/j.bej.2008.02.005 - PubMed
  18. Plaggenborg R, Overhage J, Steinbüchel A, Priefert H (2003) Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440. Appl Microbiol Biotechnol 61:528–535. https://doi.org/10.1007/s00253-003-1260-4 - PubMed
  19. Ghosh S, Sachan A, Sen SK, Mitra A (2007) Microbial transformation of ferulic acid to vanillic acid by Streptomyces sannanensis MTCC 6637. J Ind Microbiol Biotechnol 34:131–138. https://doi.org/10.1007/s10295-006-0177-1 - PubMed
  20. Plaggenborg R, Overhage J, Loos A et al (2006) Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Appl Microbiol Biotechnol 72:745–755. https://doi.org/10.1007/s00253-005-0302-5 - PubMed
  21. Falconnier B, Lapierre C, Lesage-Meessen L, Yonnet G, Brunerie P, Colonna-Ceccaldi B, Corrieu GAM (1994) Vanillin as a product of ferulic acid biotransformation by the white-rot fungus Pycnoporus cinnabarinus I-937: identification of metabolic pathways. J Biotechnol 37:123–132. https://doi.org/10.1016/0168-1656(94)90003-5 - PubMed
  22. Paz A, Costa-Trigo I, Tugores F et al (2019) Biotransformation of phenolic compounds by Bacillus aryabhattai. Bioprocess Biosyst Eng 42:1671–1679. https://doi.org/10.1007/s00449-019-02163-0 - PubMed
  23. Chen P, Yan L, Zhang S et al (2017) Optimizing bioconversion of ferulic acid to vanillin by Bacillus subtilis in the stirred packed reactor using Box-Behnken design and desirability function. Food Sci Biotechnol 26:143–152. https://doi.org/10.1007/s10068-017-0019-0 - PubMed
  24. Nazila M, Maznah BTI, Forough N (2013) Bioconversion of ferulic acid to vanillin by combined action of Aspergillus niger K8 and Phanerochaete crysosporium ATCC 24725. Afr J Biotechnol 12:6618–6624. https://doi.org/10.5897/AJB2013.12416 - PubMed
  25. Rosazza J, Huang Z, Dostal L et al (1995) Review: biocatalytic transformations of ferulic acid: an abundant aromatic natural product. J Ind Microbiol 15:457–471. https://doi.org/10.1007/BF01570016 - PubMed
  26. Fleige C, Hansen G, Kroll J, Steinbüchel A (2013) Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin. Appl Environ Microbiol 79:81–90. https://doi.org/10.1128/AEM.02358-12 - PubMed
  27. MuheimLerch AK (1999) Towards a high-yield bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 51:456–461. https://doi.org/10.1007/s002530051416 - PubMed
  28. Kaur B, Chakraborty D (2013) Biotechnological and molecular approaches for vanillin production : a review. Appl Biochem Biotechnol 169:1353–1372. https://doi.org/10.1007/s12010-012-0066-1 - PubMed
  29. Brunati M, Marinelli F, Bertolini C et al (2004) Biotransformations of cinnamic and ferulic acid with actinomycetes. Enzyme Microb Technol 34:3–9. https://doi.org/10.1016/j.enzmictec.2003.04.001 - PubMed
  30. Fleige C, Meyer F (2016) Metabolic engineering of the actinomycete Amycolatopsis sp. strain ATCC 39116 towards enhanced production of natural vanillin. Appl Environ Microbiol 82:3410–3419. https://doi.org/10.1128/AEM.00802-16 - PubMed
  31. Pérez-Rodríguez N, de Souza P, Oliveira R, Torrado Agrasar AM, Domínguez JM (2016) Ferulic acid transformation into the main vanilla aroma compounds by Amycolatopsis sp. ATCC 39116. Appl Microbiol Biotechnol 100:1677–1689. https://doi.org/10.1007/s00253-015-7005-3 - PubMed
  32. Ma XK, Daugulis AJ (2014b) Transformation of ferulic acid to vanillin using a fed-batch solid-liquid two-phase partitioning bioreactor. Biotechnol Prog 30:207–214. https://doi.org/10.1002/btpr.1830 - PubMed
  33. Hua D, Ma C, Song L et al (2007) Enhanced vanillin production from ferulic acid using adsorbent resin. Appl Microbiol Biotechnol 74:783–790. https://doi.org/10.1007/s00253-006-0735-5 - PubMed
  34. Fleige C, Steinbüchel A (2014) Construction of expression vectors for metabolic engineering of the vanillin-producing actinomycete Amycolatopsis sp. ATCC 39116. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-014-5724-5 - PubMed
  35. Gunnarsson N, Palmqvist EA (2006) Influence of pH and carbon source on the production of vanillin from ferulic acid by Streptomyces setonii ATCC 39116. Dev Food Sci 43:73–76. https://doi.org/10.1016/S0167-4501(06)80018-X - PubMed
  36. Muheim A, Muller B, Munch T (1998) Process for the production of vanillin. EP 088598A1 - PubMed
  37. Kumar R, Sharma PK, Mishra PS (2012) A review on the vanillin derivatives showing various. Biol Act 4:266–279 - PubMed
  38. Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4:86–93 - PubMed
  39. Sova M (2012) Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev Med Chem 12:749–767. https://doi.org/10.2174/138955712801264792 - PubMed
  40. Brazinha C, Barbosa DS, Crespo JG (2011) Sustainable recovery of pure natural vanillin from fermentation media in a single pervaporation step. Green Chem 13:2197–2203. https://doi.org/10.1039/c1gc15308k - PubMed

Publication Types

Grant support